ProLabs

3FE47582CC-C

Alcatel-Lucent Nokia[®] 3FE47582CC Compatible TAA GPON OLT SFP C++ Transceiver (1490nmTx/1310nmRx, 2.5Gbps/1.25Gbps, 39dBm, SC, Rugged)

Features:

- INF-8074 and SFF-8472 Compliance
- Simplex SC Connector
- Single-mode Fiber
- Industrial Temperature -40 to 85 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- GPON
- Access and Enterprise

Product Description

This Alcatel-Lucent Nokia[®] 3FE47582CC compatible SFP transceiver provides 2.4Gbs/1.2Gbs-C++ throughput up to 60km over single-mode fiber (SMF) using a wavelength of 1490nmTx/1310nmRx via a SC connector. It is guaranteed to be 100% compatible with the equivalent Alcatel-Lucent Nokia[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 120821

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		4.0	V	1
Storage Temperature	Tsto	-40		85	°C	2
Operating Case Temperature	Тор	-40		85	°C	
Data Rate	DR		2488/1244		Mb/s	3
Bit Error Rate	BER			10-10		

Notes:

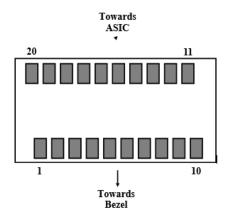
- 1. For electrical power interface
- 2. Ambient temperature
- 3. Downstream/Upstream

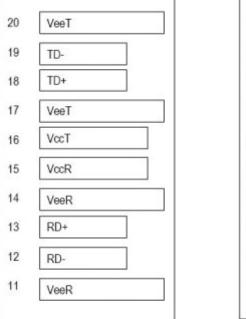
Electrical Characteristics (V_{CC}=3.14V to 3.46V, T_C=-40°C to 85°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Input Voltage	Vcc	3.14	3.30	3.46	V	
Power Supply Current	lcc		200	300	mA	
Differential data input swing	Vin,pp	600		1600	mV	
Input differential impedance	Rin		100		Ω	
Differential data output swing	Vout, pp	400		1600	mV	
Input Signal Level (LVTTL H)	V	2.0		Vcc	V	
Input Signal Level (LVTTL L)	V	0		0.8		
Output Signal Level (LVTTL H)	V	2.4		VCC	V	
Output Signal Level (LVTTL L)	V	0		0.4	V	

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Transmitter Type		1490nm DFB Laser with Isolator				1
Downstream Signaling Speed	STX		2488		Mb/s	
Output Optical Power	РТХ	3		7	dBm	2
Optical Output with TX OFF	Pout_off			-40	dBm	
Optical Extinction Ratio	ER	8.2			dB	
Optical Center Wavelength	λς	1480		1500	nm	
Spectral Width (-20dB)	Δλ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Output Eye	Compliant with G.984. 2 Data Rate=2488M			Vb/s		
Receiver						
Receiver Type	1310nm APD/TIA burst-mode Receiver					
Signaling Speed	Srx		1244		MB/s	
Optical Center Wavelength	λς	1280	1310	1360	Nm	
Average Rx Sensitivity @1244Mb/s	Rx_sen			-30	dBm	3
Burst Sensitivity Receiver Overload	Pmax	-12			dBm	
Receiver Burst Mode Dynamic Range		15			dB	
LOS Assert	LOS_A	-45			dBm	
LOS De-Assert	LOS_D			-32	dBm	
LOS Hysteresis	LOS_H	0.5				

Notes:


- 1. Continuous-mode
- 2. Class 1 Product
- 3. @BER 10⁻¹⁰ PRBS 2²³-1


	Pin Descriptions						
Pin	Symbol	Name/Descriptions	Ref.				
1	VEET	Transmitter ground (common with receiver ground)	1				
2	TFAULT	Transmitter Fault.					
3	TDIS	Transmitter Disable. Laser output disabled on high or open	2				
4	MOD_DEF (2)	Module Definition 2. Data line for serial ID	3				
5	MOD_DEF (1)	Module Definition 1. Clock line for serial ID	3				
6	MOD_DEF (0)	Module Definition 0. Grounded within the module	3				
7	RESET	Receiver Reset	4				
8	BPD	Burst Packet Detect	5				
9	RSSI Trigger	RSSI Trigger Signal From Host	6				
10	VEER	Receiver ground (common with transmitter ground)	1				
11	VEER	Receiver ground (common with transmitter ground)	1				
12	RD-	Receiver Inverted DATA out. AC coupled					
13	RD+	Receiver Non-inverted DATA out. AC coupled					
14	VEER	Receiver ground (common with transmitter ground)	1				
15	VCCR	Receiver power supply					
16	VCCT	Transmitter power supply					
17	VEET	Transmitter ground (common with receiver ground)	1				
18	TD+	Transmitter Non-Inverted DATA in. AC coupled					
19	TD-	Transmitter Inverted DATA in. AC coupled					
20	VEET	Transmitter ground (common with receiver ground)	1				

Notes:

- 1. Circuit ground is isolated from chassis ground
- 2. Disabled: T_{DIS} >2V or open, Enabled: T_{DIS} <0.8V
- 3. Should Be pulled up with 4.7k 10k ohm on host board to a voltage between 2V and 3.6V
- 4. Reset is a LVTTL input which is used to clear receiver status before receiving the next burst packet
- 5. BPD is a LVTTL output. High Level indicates that burst packet is detected by the receiver
- 6. RSSI Trigger is a LVTTL input from host for starting ADC of digital RSSI circuit to sample the analog RSSI signal

Electrical Pad Layout

Top of Board

5 MOD-DEF(1) 6 MOD-DEF(0) 7 Reset 8 BPD 9 Trigger 10 VeeR

VeeT

TxFault

Tx Disable

MOD-DEF(2)

1

2

3

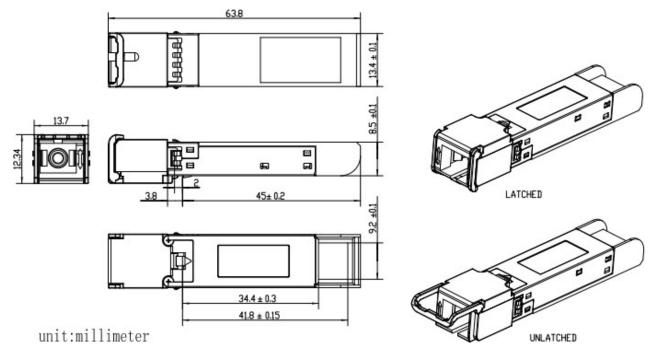
4

Bottom of Board (as viewed thru top of board)

Digital Diagnostic Functions

This transceiver supports the 2-wire serial communication protocol as defined in the SFP MSA. Digital diagnostic information is accessible over the 2-wire interface at the address 0xA2. Digital diagnostics for this module are internally calibrated by default. A micro controller unit inside the transceiver gathers the monitoring information and reports the status of transceiver.

Transceiver Temperature, internally measured, represented as a 16 bit signed twos complement value in increments of 1/256 degrees Celsius, Temperature accuracy is better than ±3 degrees Celsius over specified operating temperature and voltage.


Transceiver Supply Power, internally measured, represented as a 16 bit unsigned integer with the voltage defined as the full 16 bit value (0 – 65535) with LSB equal to 100 μ Volt, yielding a total range of 0 to +6.55 Volts.

Transceiver TX bias current, internally measured, represented as a 16 bit unsigned integer with the current defined as the full 16 bit value (0 – 65535) with LSB equal to 2 μ A, yielding a total range of 0 to 131mA. Accuracy is better than ±10% over specified operating temperature and voltage.

Transceiver TX output power, internally measured, represented as a 16 bit unsigned integer with the power defined as the full 16 bit value (0 – 65535) with LSB equal to 0.1 μ W. Data is assumed to be based on measurement of laser monitor photodiode current. Accuracy is better than ±3dB over specified temperature and voltage. Data is not valid when the transmitter is disabled.

Transceiver RX received optical power, internally measured, represented as a 16 bit unsigned integer with the power defined as the full 16 bit 35 value (0-65535) with LSB equal to 0.1μ W. Accuracy is better than ±3dB over specified temperature and voltage.

Mechanical Specifications

ALL DIMENSIONS ARE ±0.2mm UNLESS OTHERWISE SPECIFIED UNIT: mm

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information ProLabs US Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600