
SCBS222C - SEPTEMBER 1992 - REVISED MAY 1997

- Members of the Texas Instruments Widebus™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 5 V, T_A = 25°C
- High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Package and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

These 20-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

SN54ABT16841 ... WD PACKAGE SN74ABT16841 ... DL PACKAGE (TOP VIEW)

The 'ABT16841 can be used as two 10-bit latches or one 20-bit latch. The 20 transparent D-type latches provide true data at the outputs. While the latch-enable (1LE or 2LE) input is high, the Q outputs of the corresponding 10-bit latch follow the D inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable ($1\overline{OE}$ or $2\overline{OE}$) input can be used to place the outputs of the corresponding 10-bit latch in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly.

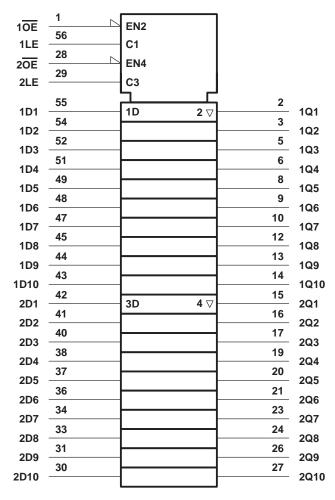
The output-enable input does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SCBS222C - SEPTEMBER 1992 - REVISED MAY 1997

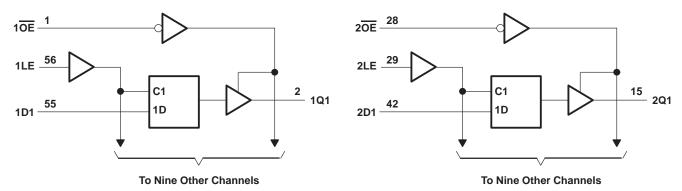
description (continued)


When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16841 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16841 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each 10-bit latch)

	INPUTS		OUTPUT
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q ₀
Н	X	Χ	Z


logic symbol†

 $^{^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	-0.5 V to 7 V
Input voltage range, V _I (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V _O	. -0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16841	96 mA
SN74ABT16841	128 mA
Input clamp current, I_{IK} ($V_I < 0$)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DL package	74°C/W
Storage temperature range, T _{stg}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 3)

			SN54AB	Γ16841	SN74AB1	T16841	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0	VCC	0	VCC	V
loн	High-level output current			-24		-32	mA
l _{OL}	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		- 55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SCBS222C - SEPTEMBER 1992 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	ARAMETER	TEST C	ONDITIONS	Т	A = 25°C	;	SN54AB	Γ16841	SN74AB1	16841	UNIT
	ARAMETER	1231 C	DINDITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT
٧ıK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5		
VOH		$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		V
VOH		V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2				V
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2		
\/a:		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V
V _{hys}					100						mV
1.		$V_{CC} = 0 \text{ to } 5.5 \text{ V}$	$V_1 = V_{CC}$ or GND			±1				±1	μА
li .		V _C C = 5 V, V _I =	V _{CC} or GND					±5			μΑ
lozpu	j‡	$V_{CC} = 0 \text{ to } 2.1 \text{ V}$ $V_{O} = 0.5 \text{ V to } 2.7 \text{ V}$			±50		±50		±50	μА	
IOZPE	₅ ‡	V _{CC} = 2.1 V to 0 V _O = 0.5 V to 2.7			±50		±50		±50	μА	
lozh		$V_{CC} = 2.1 \text{ V} \text{ to } 5$ $V_{O} = 2.7 \text{ V}, \overline{\text{OE}} 2$				10		10		10	μА
lozL		$V_{CC} = 2.1 \text{ V to } 5$ $V_{O} = 0.5 \text{ V}, \overline{\text{OE}} 2$				-10		-10		-10	μА
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ
ICEX	Outputs high	$V_{CC} = 5.5 \text{ V},$	V _O = 5.5 V			50		50		50	μΑ
I _O §		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA
	Outputs high	.,				0.5		0.5			
ICC	Outputs low	$V_{CC} = 5.5 \text{ V, I}_{O}$ $V_{I} = V_{CC} \text{ or GNI}$				89		89		89	mA
	Outputs disabled	Al = ACC or GIAD				0.5		0.5		0.5	
ΔICC¶		V _{CC} = 5.5 V, On Other inputs at V			1.5		1.5		1.5	mA	
C _i		V _I = 2.5 V or 0.5	V		3.5						pF
Co		$V_0 = 2.5 \text{ V or } 0.5$	5 V		7.5						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		SN54A	BT16841	
		V _{CC} = 5 V, T _A = 25°C	MIN MAX	UNIT
		MIN MAX	1	
t _W	Pulse duration, LE high or low	4	4	ns
t _{su}	Setup time, data before LE↓	3	3	ns
th	Hold time, data after LE↓	2.6	2.6	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] This parameter is characterized, but not production tested.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

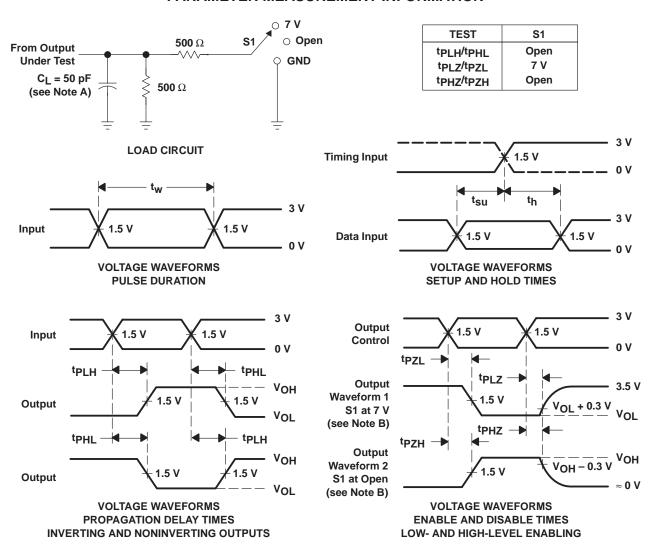
[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS222C - SEPTEMBER 1992 - REVISED MAY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		S	N74AB	T16841		
		V _{CC} = T _A = 2	5 V, 25°C	MIN	MAX	UNIT
		MIN	MAX			
t _W	Pulse duration, LE high or low	4		4		ns
t _{su}	Setup time, data before LE↓	1		1		ns
th	Hold time, data after LE↓	2		2		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)


				SN54ABT16841						
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍	CC = 5 V A = 25°C	/, ;	MIN	MAX	UNIT		
				TYP	MAX					
t _{PLH}	D	Q	1.1	3.2	4.3	1.1	5.7	ns		
^t PHL	В	3	1.6	3.5	4.5	1.6	5.3	113		
t _{PLH}	LE	Q	1.1	3.2	4.4	1.1	5.6	ns		
t _{PHL}	LL	ά	1.6	3.4	5	1.6	5.5	113		
^t PZH	ŌĒ	Q	1.2	3.2	4.7	1.2	5.8	ns		
tPZL	OE	y	1.7	3.6	5	1.7	5.7	115		
^t PHZ	ŌĒ	Q	2.2	4.1	6.6	2.2	7.7	ns		
^t PLZ	OE .	ζ	1.9	4.4	5.8	1.2	8.4	115		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍	CC = 5 V 4 = 25°C	/, ;	MIN	MAX	UNIT
			MIN	TYP	MAX			
t _{PLH}	D	Q	1.1	3.2	4.3	1.1	5	ns
t _{PHL}]	ď	1.6	3.5	4.5	1.6	5.1	115
t _{PLH}	LE	Q	1.1	3.2	4.4	1.1	5	ns
t _{PHL}	LL	Q	1.6	3.4	4.6	1.6	5	115
^t PZH	ŌĒ	Q	1.2	3.2	4.7	1.2	5.7	ns
t _{PZL}	OE .	Q	1.7	3.6	5	1.7	5.6	115
^t PHZ	ŌĒ	Q	2.2	4.1	5.7	2.2	6.5	ne
tPLZ) OE		1.9	4.4	5.8	1.9	7.1	ns

SCBS222C - SEPTEMBER 1992 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Q} = 50 Ω , t_{f} \leq 2.5 ns, t_{f} \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ABT16841DL	ACTIVE	SSOP	DL	56	20	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT16841	Samples
SN74ABT16841DLR	ACTIVE	SSOP	DL	56	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT16841	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

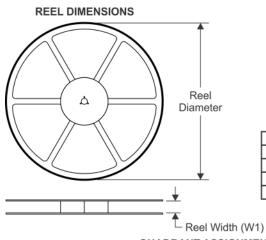
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

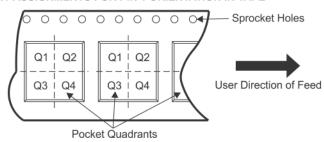
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



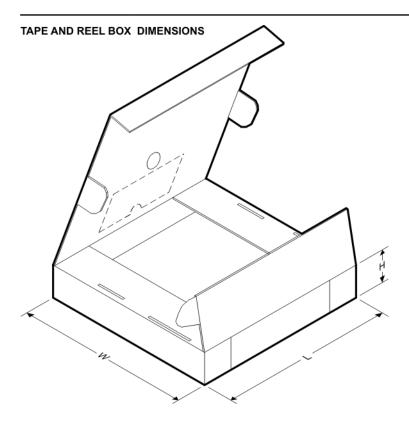
10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022


TAPE AND REEL INFORMATION

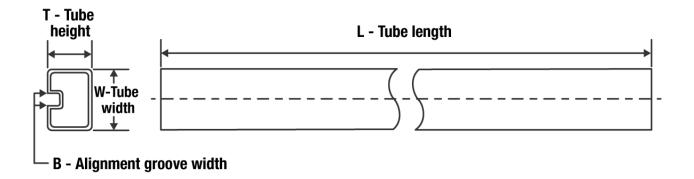
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABT16841DLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

www.ti.com 5-Jan-2022

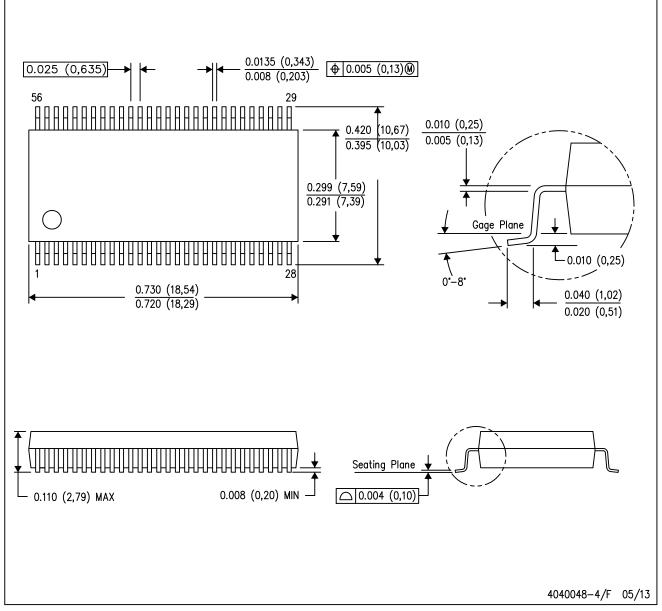

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABT16841DLR	SSOP	DL	56	1000	367.0	367.0	55.0

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74ABT16841DL	DL	SSOP	56	20	473.7	14.24	5110	7.87

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated