

LED Driver for Automotive Exterior/Interior Lamp

40V 150mA 4ch 2 LEDs in series Constant Current LED Driver for Automotive BD18347EFV-M Evaluation Board

Introduction

This user's guide will provide the necessary steps to operate the Evaluation Board of ROHM's BD18347EFV-M LED Driver. This document includes the external parts, operating procedures and application data.

Description

This Evaluation Board was developed for ROHM's LED Driver BD18347EFV-M. BD18347EFV-M is a 40V-withstanding constant current LED driver for automotive applications. It is a 4 channel LED driver with the built-in energy sharing control which can realize to make the board size small. High reliability can be realized with LED Open Detection, the OUTx (all later x=1 to 4) pin Short Circuit Protection, Over Voltage Mute and Thermal Shutdown Function.

Application

Automotive LED Exterior Lamp (Rear Lamp, License Lamp, DRL / Position Lamp, Fog Lamp etc.) Automotive LED Interior Lamp (Air Conditioner Lamp, Interior Lamp, Cluster Light etc.).

Evaluation board operating condition (default setting)

			0,	
Parameter	Min	Тур	Max	Unit
Power supply voltage *1	5.5	13	20 ^{*1}	V
LEDs in series (per channel)	1	-	2	pcs
LEDs in parallel (per IC set)	-	4	-	ch
Number of IC on EVK	-	2	-	units
Output current (per channel)	-	100 ^{*2}	150	mA
CR Timer Frequency (Global PWM Dimming)	-	300 ^{*3}	-	Hz

Table 1. Evaluation board operating condition (default setting)

*1 This indicates the voltage near the VIN pin. Be careful of voltage drop by the impedance of power line.

*2 Output current is determined by the RSETx resistors placed on SETx pins and the PWM duty cycle.

*3 Global PWM Dimming CR Timer Frequency is determined by the capacitor CCRT and RCRT placed around CRT pin and DISC pin.

Evaluation board (BD18347EFV-EVK-101)

Figure 2. Bottom view

U1-Energy Sharing TP1: U1-CRT U1 J8: U1-GlobalPWM resistors TP9: U1-PBUS mode онт BATT plug J6: U1 MSET1 C J9: U1-DC IN mode J4: U1 to U2 PBUS \bigcirc GND plug connection jumper J10: U2-Global **PWM** U2 101 fant Current LEU Driver mode J11: U2-DC IN J12: U2 U2-Energy TP14: U2-CRT mode Sharing resistors MSET1 TP18: U2-PBUS

Figure 3. Evaluation board setup - Left Side of EVK: IC, jumpers and test points

Evaluation board setup

Figure 4. Evaluation board setup - Right Side of EKV: LED driver related jumpers

Figure 5. Evaluation board setup – Right Side of EVK: switch, jumpers and FET for individual dimming

Operating procedure: DC Input

- 1. Connect jumpers J9 and J11 while disconnecting jumpers J8 and J10.
- 2. Connect BATT and GND plug to power supply.
- 3. Observe the LED turn on for all channels at 100% duty cycle.

Operating procedure: Global PWM Dimming

- 1. Connect jumpers J8 and J10 while disconnecting jumpers J9 and J11.
- 2. Connect BATT and GND plug to power supply.
- 3. Observe the LED turn on for all channels at about 10% duty cycle at 300Hz.
- 4. For more information about Global PWM Dimming please see the datasheet section 4: PWM Dimming Operation.

Figure 6. Global PWM Dimming setup

Operating procedure: Individual PWM Dimming

- 1. Connect jumpers J9 and J11 while disconnecting jumpers J8 and J10.
- 2. Slide SW1 through SW8 to the right to connect RSETx to the FETs to individually PWM each channel.
- 3. Connect a function generator to the appropriate J5 pins to control each channel individually (see PCB schematic).
- 4. Connect BATT and GND plug to power supply.
- 5. Observe the LED turn on with duty cycle of the function generator for each individual channel.
- 6. The figure below shows how individual PWM operation works. A signal driving the gate of the FETs will PWM the RSETx resulting in each individual channel following the PWM frequency and duty cycle of the signal.

Figure 7. Individual PWM Dimming setup

Functionality: Lamp Control Modes

1. Use the jumpers J6, J7, J12 and J13 to control the MSET1 and MSET2 of the two IC U1 and U2.

By connecting the MSET1 pin to ground or open, it is possible to change output channel operation mode on detecting an

LED error. The MSET2 pin can also be used to control CH4 operation.

MSET1=L (GND short) : If SCP or LED Open is detected in any one of 4 channels, all the channels are OFF.

MSET1=H (Pin open) : Remaining channels continue to operate even if one channel detects SCP or LED Open.

MSET2=L (GND short) : CH4 operates in the same way as CH1 to CH3

MSET2=H (Pin open) : CH4 ignores the PWM signal generated by CRTIMER and are always in DC mode. When CH4 detects SCP or LED Open, PBUS : H is maintained and CH1 to CH3 continue to operate (License Lamp Mode).

Normal Wod	e (INISEI 2	=L)	·				2		
MSET1	MSET2	OUT1 to OUT3 OPEN Detect	OUT1 to OUT3 SCP	OUT <mark>4</mark> OPEN Detect	OUT4 SCP	LED Error CH Output	Remaining CH1 to CH3 Output	CH4 Output	PBUS
1		Detect	-	-	-	ON	OFF	OFF	
		25	Detect		2	OFF	OFF	OFF	
CHOFE	T.	÷:	-	Detect	-	ON	OFF	ON	-
onon	Normal	25	2	-	Detect	OFF	OFF	OFF	
н	Mode	Detect	-	-	-	ON	ON	ON	
IndividualCH	WOOL	-	Detect	-	-	OFF	ON	ON	
		÷:	-	Detect	-	ON	ON	ON	-
UFF		2	2	2	Detect	OFF	ON	OFF	

Table 2. Lamp Control Modes

License Mode (MSET2=H)

MSET1	MSET2	OUT1 to OUT3 OPEN Detect	OUT1 to OUT3 SCP	OUT4 OPEN Detect	OUT4 SCP	LED Error CH Output	Remaining CH1 to CH3 Output	CH4 Output	PBUS
1		Detect	2	2	-	ON	OFF	ON	I H
		+	Detect	-	-	OFF	OFF	ON	
CHOEE		2	2	Detect		ON	ON	ON	
CHOFF	Liconco	-	-	-	Detect	OFF	ON	OFF	.
ц	Modo	Detect	-	-	-	ON	ON	ON	
n Individual/CLL	MOUE	=	Detect	-	-	OFF	ON	ON	
		-	2	Detect	-	ON	ON	ON	ц
OFF		-	-	-	Detect	OFF	ON	OFF	1003

Functionality: OUTx short to ground

1. Use the jumper J2 to short IC U1 OUT1 pin to ground..

If the OUTx pin is shorted to GND, the OUTx voltage goes low. When the OUTx pin voltage $V_{OUTx} \le 0.6 \text{ V}$ (Typ), then SCP mechanism is enabled after a delay of t_{SCPD2} (20 µs (Typ)). In case of SCP, output current I_{OUT} is turned off to prevent thermal damage of the IC. Fault is indicated by pulling the PBUS pin low after a delay open t_{SCPD1} (60 µs (Typ)). To prevent false SCP at power supply startup, the output SCP is disabled until $V_{CRT} > 2.0 \text{ V}$ (Typ) once UVLO is released. In case of power supply ramping up with the OUTx pin short circuit condition ($V_{OUTx} < 0.6 \text{ V}$ (Typ)), SCP

mechanism is enabled after t_{SCPPON} (140 μ s (Typ)), only if UVLO is released and V_{CRT} > 2.0 V (Typ).

Functionality: LED open

1. Remove resistor R7 and use jumper J1 to simulate an open LED condition.

When one of the LEDs is in the open state, the OUTx pin voltage rises. At $V_{OUTx} \ge V_{INRES} - 0.05 V$ (Typ), LED Open Detection operation is performed. In case of LED Open Detection, fault is indicated by pulling the PBUS pin low.

Functionality: SETx short to ground

1. Use jumper J3 to short IC U1 SET4 resistor to ground.

When the SETx pin is shorted to GND, the IC detects that the SETx pin current has increased and turns off the output current. The maximum resistance on the SETx pin short detection is $R_{SETx} \le 5.0 \text{ k}\Omega$ (Max). Fault is indicated by pulling the PBUS pin low

pin low.

Note that the SETx pin short detection resistance value R_{SETx} is 5 k Ω or less when the over voltage mute function is active.

Functionality: PBUS

1. Use jumper J4 to short IC U1 and IC U2 PBUS pins together.

The PBUS pin is the pin to input and output an error signal.

When abnormality such as LED Open or the OUTx pin short circuit occurs, it can notify the abnormality to the outside by changing the PBUS pin output from high to low. In addition, by externally controlling the PBUS pin from high to low, the output current is turned off. When using multiple LSIs to drive multiple LEDs, it is possible to turn off all LED lines at once by connecting the PBUS pins of each CH as shown in the figure below, even if LED Open or the OUTx pin short

circuit occurs.

Figure 8. PBUS Function

Pin configuration

Figure 9. Pin configuration

Evaluation board schematic

Parts list

		Table 3.	Parts list		
			Package		
Reference	Value	Description	Reference	Mfg	PART NUMBER
		CAP CER			
C1,C2,C3,C4,C8,		0.1UF 50V			
C10,C11,C12,C13,C17	0.1uF	X7R 0805	0805	AVX	08055C104MAT2A
		CAP CER 1UF			
		50V X7R			
C5,C9,C14,C18	1uF	1206	1206	KEMET	C1206C105K5RACTU
		CAP CER			
		SMD			
		0805 .01UF			
C6,C16	0.01uF	X7R 5% 50	0805	KEMET	C0805C103J5RAC7210
		CAP CER			
		4.7UF 50V			C3216X7R1H475K160A
C7,C15	4.7uF	X7R 1206	1206	TDK	E
		Diode 600 V			
D1,D3,D13,D15	600V, 1.5A	1.5A	SOD-128	ROHM	RFN2LAM6STFTR
		27 V 5 A	2-SMD, J-		
D2,D14	27V, 5A	Varistor	Lead	PANASONIC	ERZ-HF2M270
		Diode 600 V			
D4,D16	600V, 0.8A	0.8A	SOD-128	ROHM	RFN1LAM6STFTR
D5,D6,D7,D8,D9,D10,					
D11,D12,D17,D18,D19,	555	Red 620nm			450000000000000000000000000000000000000
D20,D21,D22,D23,D24	RED	LED 2.2V	1411	WURTH	150283R5/3103
		Connector	2 position		
J1,J2,J3,J4,J6,J7,J8,		Header	0.100°	CLULING	DD COOC A ANI
J9,J10,J11,J12,J13	JUMPER	Inrough Hole	(2.54mm)	SULLINS	PBC02SAAN
			Position		
			Shuht		
		lumpor	Riack Closed		
J1,J2,J3,J4,J0,J7,J0,		shorting tin			STCO2SVAN
J9,J10,J11,J12,J13	JOIVIFLIN	Connector	12 position	SOLLINS	STC02STAN
		Header	0 100"		
15	ILIMPER		(2.54 mm)	ЗМ	929665-02-06-1
	JOINTER	N-Channel 30	(2.3 mm)	5111	525005 02 00 1
01 02 03 04		$V 2\Delta$ (Ta)			
05.06.07.08	NFFT	950mW	SC-95	ROHM	RSO020N03HZGTR
		100 Ohms			
		±1% 0.75W.			
		3/4W Chip			
R1,R2,R3,R4,R5,R6,R26.		Resistor	0612/1206-		
R27,R28,R29,R30,R31	100	Wide	Wide	ROHM	LTR18EZPF1000

			Package		
Reference	Value	Description	Reference	Mfg	PART NUMBER
R7,R9,R10,R11,R12,R13,		0 Ohms			
R14,R15,R16,R34,R36,		Jumper			
R37,R38,R39,R40,R41,R		0.1W, 1/10W			
42	0	Chip Resistor	0603	ROHM	SFR03EZPJ000
		3.6 kOhms			
		±1% 0.4W,			
		2/5W Chip			
R8,R32	3.6k	Resistor	0805	ROHM	ESR10EZPF3601
		18 kOhms			
		±1% 0.125W,			
R17,R18,R19,R20,		1/8W Chip			
R33,R35,R43,R44	18K	Resistor	0805	ROHM	KTR10EZPF1802
		10 kOhms			
		±1% 0.125W,			
R49,R50,R51,R52		1/8W Chip			
,R53,R54,R55,R56	10K	Resistor	0805	ROHM	KTR10EZPF1002
SW1,SW2,SW3,		SWITCH			
SW4,SW5,		SLIDE SPDT	CL-SB-12B-	NIDEC	
SW6,SW7,SW8	SW_1P2T	200MA 12V	01_NDC	COPAL	CL-SB-12B-01T
			0.040"		
TP1,TP2,TP3,TP4,TP5,			(1.02mm)		
TP9,TP10,TP11,TP12,		Red PC Test	Hole		
TP13,TP14,TP18	Test_Pad	Point	Diameter	KEYSTONE	5000
		Binding Post	0.086"		
TP6	V_BATT	Red	(2.18mm)	CINCH	111-0702-001
		Binding Post	0.086"		
TP7	GND	Black	(2.18mm)	CINCH	111-0703-001
			0.040"		
			(1.02mm)		
		Black PC Test	Hole		
TP19,TP20	Test_Pad	Point	Diameter	KEYSTONE	5001
		40V 150mA			
		4ch Constant			
	BD18347EF	Current LED	HTSSOP-		
U1,U2	V-ME2	Driver	B16_ROM	ROHM	BD18347EFV-ME2
			0.500"		
			(12.70mm)	RAF	
N/A	N/A	Hex Standoff	1/2"	ELECTRONIC	4534-632-S-28
		#6-32 Hex			
		Nut 0.245"			
		(6.22mm)	0.245"		
N/A	N/A	Steel	(6.22mm)	KEYSTONE	4701

Board layout

Evaluation board PCB information

Material	FR-4
Board thickness	1.575mm
Copper thickness	2 oz
Number of layers	2
Board size	60X185mm
Minimum copper width	0.325mm
Minimum air gap	0.350mm
Minimum hole size	0.406mm

The layout of BD18347EFV-M is shown below.

Figure 11. Top Layer and Top Silk Screen

Figure 12. Bottom Layer

Reference application data (Ta=25°C)

Figure 13. Thermal profile front side Left and Right Side of EVK (100% Duty, VIN = 12V)

Figure 14. Thermal profile front side Left and Right Side of EVK (10% Duty, Global Dimming, VIN = 12V)

Figure 16. U1 in Normal Mode (MSET2=Ground)

Figure 18. U2 in Normal Mode (MSET2=Ground)

Figure 20. U1 OUT1 in Individual PWM (50% duty)

Figure 17. U1 in License Mode (MSET2=Open)

Figure 19. U2 in License Mode (MSET2=Open)

Revision history

Date	Revision number	Description
November 1, 2021	001	Initial release

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/