Features

Power Module

- High power density (L*W*H = 12.19*12.19*3.75)
- Wide operating temperature -40°C to +105°C at full load
- Efficiency up to 97%, no need for heatsinks
- 6-sided shielding
- Thermally and EMI enhanced 25 pad LGA package
- Compact DOSA-compatible footprint
- Low profile

Description

The RPM-3.0 series is a 3A non-isolated switching regulator power module with a full set of features including adjustable output, sequencing, soft-start control, on/off control, and power good signals. The ultra-compact module has a profile of only 3.75mm, but with an efficiency of up to 97%, the device can operate at full load in ambient temperatures as high as +105°C without forced air cooling. The package is complete with 6-sided shielding for optimal EMC performance and excellent heat management.

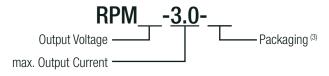
RPM-3.0

3 Amp Single Output

Selection (Selection Guide									
Part Number	Input Voltage Range ⁽¹⁾ [VDC]	Output Voltage [VDC]	Vout Adjust Range [VDC]	Output Current max. [A]	Efficiency typ. [%]	Max. Capacitive Load ⁽²⁾ [μF]				
RPM3.3-3.0	3 - 17	3.3	0.9 - 6.0	3.0	87 - 97	800				
RPM5.0-3.0	3 - 17	5	0.9 - 6.0	3.0	90 - 97	800				

Note1: Refer to "Input Voltage Range"

Note2: Max. Cap Load is tested at nominal input and full resistive load



EN55032 compliant

Model Numbering

Notes:

Note3: add suffix "-CT" for tube packaging for more details refer to "PACKAGING INFORMATION" without suffix, standard tape and reel packaging

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

BASIC CHAR	ACTERISTICS					T
Parameter		Condition		Min.	Тур.	Max.
Internal Input Fil	ter				capacitor	
Input Voltage Range	Buck mode		3.3Vout 5Vout	3.45VDC 5.15VDC	12VDC	17VDC
	100% duty cycle mode (4)	Vout= Vin - Vdrop	3.3Vout 5Vout	3VDC		3.45VDC 5.15VDC
Absolute Maxim	um Input Voltage					20VDC
Undanialtaga La	volcout (LIV/LO)	DC-DC ON	2.6VDC	2.7VDC	2.8VDC	
Undervoltage Lo	ickout (UVLO)	DC-DC OFF	2.8VDC	2.9VDC	3.0VDC	
Input Current		nom. Vin= 12VDC	3.3Vout		1.0A	
input Gurrent		HOHI. VIII= 12VDC	5Vout		1.4A	
Quiescent Curre	ent				30μΑ	
Internal Dower F	Vincination		3.3Vout			1.4W
Internal Power D	Jissipation		5Vout			1.6W

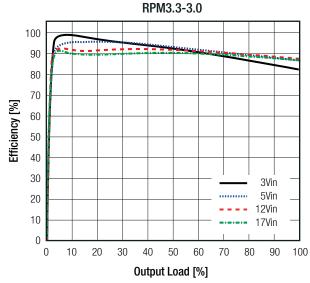
continued on next page

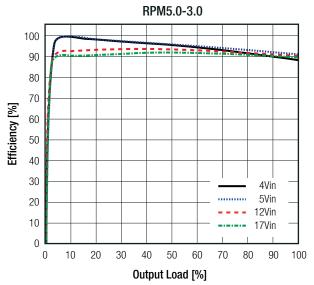
Series

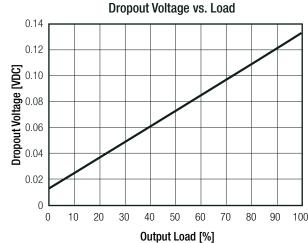
Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

Parameter	Condition	Min.	Тур.	Max.
Output Voltage Trimming (5)		0.9VDC		6VDC
Minimum Dropout Voltage (Vdrop) (6)	Vin min. = Vdrop + Vout		50mV/A	
Minimum Load		0%		
Start-up Time	without using soft start function/ power up		1.6ms	
Start-up Time	using CTRL function		1.5ms	
Rise-time			1.4ms	
ON/OFF CTRL	DC-DC ON		Оре	n or 0.9V <v<sub>CTRI <vin< td=""></vin<></v<sub>
OWOFF CINE	DC-DC OFF		Short or -0	$.3V < V_{CTRL} < 0.45VDC$
Input Current of CTRL Pin	DC-DC OFF		1.2µA	
Standby Current	DC-DC OFF		15µA	
Internal Operating Frequency			1.25MHz	
Output Ripple and Noise (7)	20MHz BW, 80Ω@ 100MHz		60mVp-p	
Absolute Maximum Capacitive Load	below 1 second start up + $C_{ss} = 3700$ nF			42000µF
Absolute Maximum Capacitive Load	below 1 second start up without softstart mode			800μF

Notes:

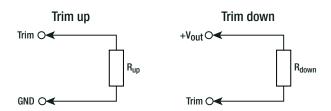

Note4: As input approaches output voltage set point, device enters 100% duty cycle mode. In 100% duty cycle mode, Vout equals Vin minus dropout voltage (see Dropout vs. Load graph)


Note5: For more detailed information, please refer to trim table or calculation on page RPM-3


Note6: Required dropout voltage per 1A output current to be within accuracy (see Dropout vs. Load graph)

Note7: Measurements are made with a 22µF MLCC across output (low ESR)

Efficiency vs. Load



Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

OUTPUT VOLTAGE TRIMMING

The RPM series offers the feature of trimming the output voltage over a range between 0.9V and 6V by using external trim resistors. The values for trim resistors shown in trim tables below are according to standard E96 values; therefore, the specified voltage may slightly vary.

Vout_{nom} = nominal output voltage [VDC]

 $Vout_{set}$ = trimmed output voltage [VDC]

 V_{ref} = reference voltage [VDC]

 $\mathsf{R}_{_{\mathsf{up}}} \qquad \quad = \mathsf{trim} \; \mathsf{up} \; \mathsf{resistor} \qquad \quad [\Omega]$

 $R_{down} = trim down resistor [\Omega]$

 $R_1, R_2, R_3 = internal resistors$ [Ω]

Vout _{nom}	R ₁	R_2	R_3	V _{ref}	
3.3VDC	376kΩ	11:0	471kΩ	0.81VDC	
5VDC	344kΩ	1kΩ	431kΩ		

Calculation:

$$\mathbf{R}_{\mathbf{up}} = \begin{bmatrix} \frac{\mathbf{R}_1}{\mathbf{Vout}_{cot} - \mathbf{V}_{norm}} \end{bmatrix} - \mathbf{R}_2$$

$$\mathbf{R_{down}} = \begin{bmatrix} \frac{(Vout_{set} - V_{ref}) \times R_3}{Vout_{nom} - Vout_{set}} \end{bmatrix}$$

Practical Example RPM3.3-3.0:

$$\mathbf{R}_{up} = \begin{bmatrix} 376k \\ 4.3 - 3.3 \end{bmatrix} - 1k = 375k\Omega$$

$$R_{up}$$
 according to E96 $\approx 374k\Omega$

$$\mathbf{R}_{\text{down}} = \left[\frac{(1.8 - 0.81) \times 471 \text{k}}{3.3 - 1.8} \right] = \underline{\mathbf{311k}}\underline{\Omega}$$

$$R_{down}$$
 according to E96 $\approx 309k\Omega$

RPM3.3-3.0

Trim up

Vout _{set} =	3.5	3.7	3.9	4.1	4.3	4.5	4.7	5.0	5.5	6.0	[VDC]
R _{up} (E96) ≈	1M91	953k	634k	475k	374k	316k	267k	221k	169k	137k	[Ω]

Trim down

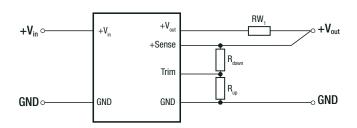
Vout _{set} =	3.0	2.7	2.5	2.2	2.0	1.8	1.5	1.2	1.0	0.9	[VDC]
R _{down} (E96) ≈	3M40	1M47	1M	590k	432k	309k	182k	86k6	39k2	17k4	[Ω]

RPM5.0-3.0

Trim up

Vout _{set} =	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.0	[VDC]
R _{up} (E96) ≈	3M32	1M69	1M15	866k	681k	576k	487k	422k	383k	340k	[Ω]

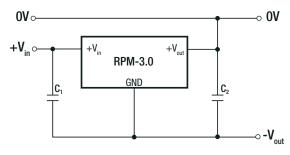
Trim down


Vout _{set} =	4.5	4.0	3.5	3.3	2.5	1.8	1.5	1.2	1.0	0.9	[VDC]
R_{down} (E96) \approx	3M16	1M37	768k	634k	294k	133k	84k5	44k2	20k5	9k53	[Ω]

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

REMOTE SENSE



The output voltage can be adjusted via the trim and sense functions.

The maximum output voltage from Trim and Sense function combined is 5.5VDC. Derating may be required when using Trim and/or sense functions.

 $\mathbf{RW_1}$... wire losses + $\mathbf{R_{up}}$... trim up resistor $\mathbf{R_{down}}$... trim down resistor

POSITIVE TO NEGATIVE

 ${\bf C_1}$ and ${\bf C_2}$ may be added to reduced ripple and should be fitted close to the converter pins.

Notes:

Note8: RECOM Power Modules can also be used to convert a positive voltag into a negative voltage. Parameters such as maximum Vin, efficiency and maximum operating temperature are reduced. Please contact RECOM for further details.

REGULATIONS

Parameter	Condition	Value					
Output Accuracy		±3.0% max.					
Line Regulation	low line to high line, full load	0.25% typ. / $\pm 3.0\%$ max.					
Load Regulation	0% to 100% load	0.5% typ. / 3.0% max.					
Soft-Start Time		refer to soft-start capacitor calculation					
	100% - 10% load step	200mV max.					
Transient Despense	recovery time	6ms typ.					
Transient Response	25% load step change	150mV max.					
	recovery time	500µs typ.					

Sequencing Multiple Modules

The SEQ pin can be used to program the rising edge of the output voltage. An internal current source charges a soft-start capacitor which is connected from the sequencing pin to GND. The following equation is used to calculate the soft-start capacitor:

 C_{ss} = soft-start capacitor

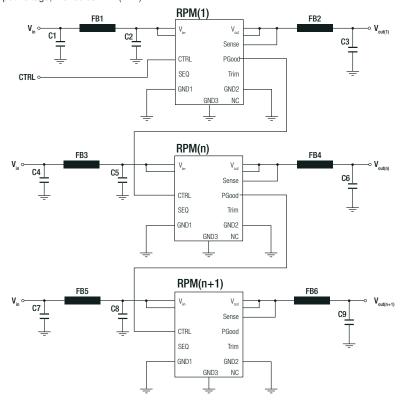
= sum of all soft-start currents of all sequenced modules

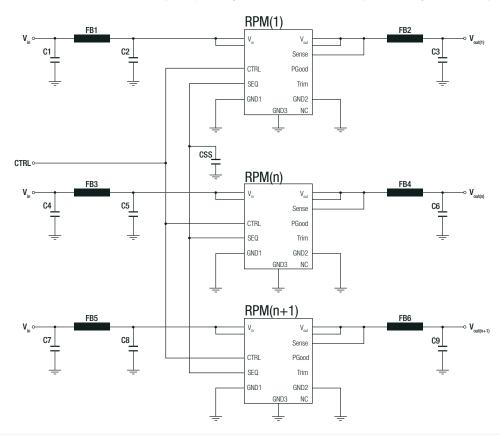
 t_{ss} = required soft-start time

n = number of RPMs

Note: there is a 3.3nF internal soft-start capacitor, and there are different constant current sources in the modules which leads to different preset soft-start times.

C –	$t_{ss} \times l_{ss}$	n v 0 0nF
\mathbf{o}_{ss} –	1.25V	- n x 3.3nF


	I _{ss} [μA]		Preset soft-start time [µs]			
Min.	Тур.	Max.	Min.	Тур.	Max.	
4.5	5.0	5.5	750	825	920	


Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

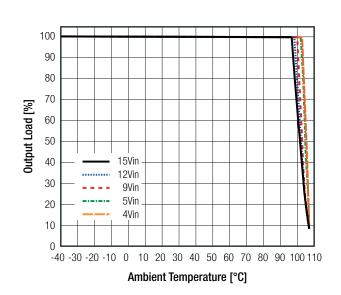
To sequence multiple power module start-up times the power good (PGood) pin and the CTRL pin may be used. In below schematic, the RPM(n) starts after RPM(1) reaches its set output voltage and the power good signal is set to high which then enables RPM(n). After RPM(n) reaches its set output voltage, it enables RPM(n+1).

To sequence multiple converters to start at the same time (set output voltage is reached at the same time), the following schematic may be used:

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

PROTECTIONS								
Parameter	Conc	lition	Value					
Short Circuit Protection (SCP)	501	m Ω	constant current mode					
Short Circuit Input Current	without soft	-start mode	75mA typ.					
Over Current Protection (OCP)	with soft-	start mode	120%, pulse by pulse current limitation					
Over Temperature Protection (OTP)	case temperature (measured on tc point)	DC-DC OFF DC-DC ON	110°C, auto restart after cool down 100°C typ.					


ENVIRONMENTAL			
Parameter	Condition		Value
Operating Temperature Range (9)	@ natural convection 0.1m/s (refer to derating graph)		-40°C to +100°C
Maximum Case Temperature	measured on tc point (see dimension drawing)		+110°C
Temperature Coefficient	@ +65°C Tamb		0.02%/K
Thermal Impedance (9)	0.1m/s, horizontal (Tcase to Tamb)		8K/W
Operating Altitude	with derating @ natural convection 0.1m/s (refer to altitude vs. load graph)		5000m
Operating Humidity	non-condensing		5% - 95% RH max.
Shock	MIL-STD-810G, Method 516.6, Procedure I		40g, 11ms, saw-tooth, 3 shocks ± per axis 3 axis; unit is operating
	MIL-STD-810G, Method 516.6, Procedure IV		drop on 50mm plywood on concrete 26 times from 1 meter
Temperature Cycling	MIL-STD-883F, Method 1010, Condition A		powered -50°C to +85°C, 300 cycles
Random Vibration	MIL-STD-810G, Method 514.6, Procedure I, Category 24		Category 24 - Figure 514.6E-1 - power spectral density = 0.04g ² /Hz at 20Hz -1000Hz; -6dB/octave at 1000Hz - 2000Hz; 60 minutes x 3 axis; unit is operating during tests
MTBF	according to MIL-HDBK-217F, G.B. @ full load	+25°C +85°C	2400 x 10 ³ hours 660 x 10 ³ hours

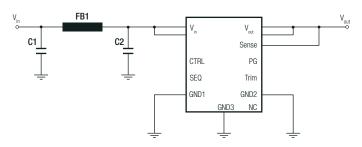
Notes:

Note9: tested with a eurocard 160x100mm 70µm copper, 4 layer

Derating Graph (9)

(@ chamber and natural convection 0.1m/s)

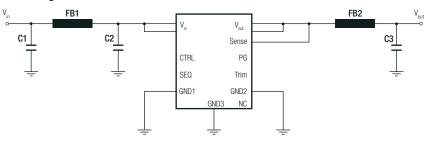
Series


EN55032, Class A and B

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

SAFETY AND CERTIFICATIONS		
Certificate Type (Safety)	Report / File Number	Standard
Audio/video, information and communication technology equipment. Safety requirements	designed to meet	EN62368-1
RoHS 2+		RoHS 2011/65/EU + AM2015/863
EMC Compliance	Condition	Standard / Criterion
Floatramagnatic compatibility of multimodic equipment, emission requirements	with external components	ENEEOSO Class A and D

EMC filtering suggestion according to EN55032


Electromagnetic compatibility of multimedia equipment - emission requirements

Component List Class A

C1	C2 (10)	FB1	
10F 05V V7D	10F 051/ V7D	WE ref:	
10μF 25V X7R	10μF 25V X7R	742792510	

EMC filtering suggestion according to EN55032

Component List Class B

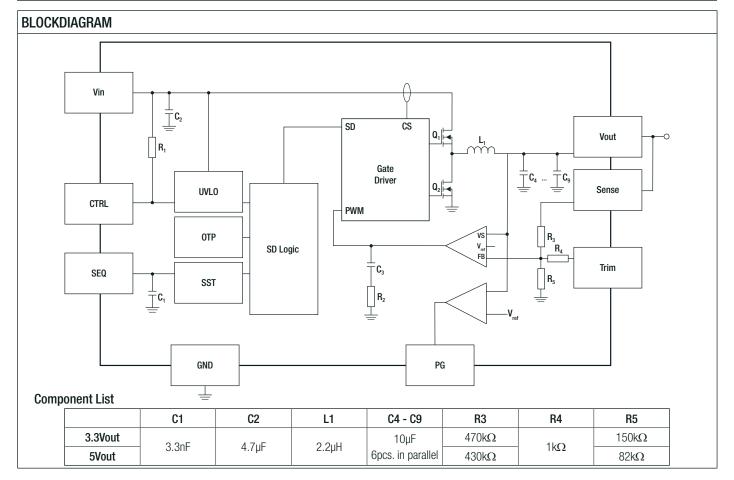
C1	C2 (10)	FB1	FB2	C3	
10μF 25V X7R	10µF 25V X7R	WE ref:	WE ref:	22uF 10V 7XR	
Τυμε 250 λ/Κ	10μΓ 230 λ/ h	742792510	7427932	22μΓ 100 / ΛΝ	

Notes:

(see filter suggestions below)

Note10: C2 is only required below 10V input voltage

DIMENSION AND PHYSICAL CHARACTERISTICS		
Parameter	Туре	Value
	case	metal
Material	PCB	FR4, (UL94 V-0)
	solder pads	copper with electrolytic nickel-gold
Dimension (LxWxH)		12.19 x 12.19 x 3.75mm
Weight		1.1g typ.



Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

Dimension Drawing (mm) Pinning information Pad # Function Description ±0.2 12.19 ± Positive input voltage with respect to GND. Connect to a A1, A2 Vin Vin plane for enhanced thermal performance Active High: pull to GND to disable the device. C1 CTRL Pull high or leave open to enable the device Positive output voltage. Connect to a Vout plane for 12.19 ±0.5 A5, B5 Vout enhanced thermal performance Connect this pad to the load or directly to Vout. 11.70 11.70 C5 Sense This pad must not be left floating E5 Trim Used to set the output voltage between 0.9V and 6V E2 NC Not connected Used to sequence multiple converters or to set the **Recommended Footprint Details** E1 SEQ startup time. Float if not used **Bottom View Top View** Output power good. High = Vout at set level, low = Vout 25 x □1.0 1.06 below nominal regulation. Maximum sink current is D1 **PGood** 2mA. It has a high impedance output $(100k\Omega$ connected to Vout). Float if not used A3, A4, B1, B2, B3, B4, C2, C3, Negative input voltage. Connect to GND plane(s) for GND enhanced thermal performance В □ □ □ □ D C4, D2, D3, _ _ _ _ | E D4, D5, E3, E4 П 2 3 2 tc = case temperature measuring point Pad tolerance= ±0.05mm

Case tolerance= ±0.25mm

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

PACKAGING INFORMATION		
Parameter	Туре	Value
	tape and reel	330.2 x 330.2 x 30.4mm
Packaging Dimension (LxWxH)	tape and reel (carton)	365.0 x 365.0 x 55.0mm
	tube ("-CT")	530.0 x 30.3 x 19.2mm
Dealessing Quantity	tape and reel	500pcs
Packaging Quantity	tube ("-CT")	30pcs
Tape Width		24mm
Storage Temperature Range		-55°C to +125°C
Storage Humidity	non-condensing	95% RH max.

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

www.recom-power.com REV.: 7/2020 RPM-9