

Automotive rail-to-rail 1.8 V high-speed comparator

Datasheet - production data

Features

- AEC-Q100 and Q003 qualified
- Extended temperature range: -40 °C to 150 °C
- Propagation delay: 38 ns
- Low current consumption: 73 μA
- Rail-to-rail inputs
- Push-pull outputs
- Supply operation from 1.8 to 5 V
- High ESD tolerance: 5 kV HBM, 300 V MM
- Latch-up immunity: 200 mA
- SMD package

Related products

 TS3021 for standard temperature range (-40 °C to 125 °C)

Applications

- Automotive
- Telecom
- Instrumentation
- Signal conditioning
- High-speed sampling systems
- Portable communication systems

Description

The TS3021H single comparator features highspeed response time with rail-to-rail inputs. With a supply voltage specified from 2 to 5 V, this comparator can operate over a wide temperature range: -40 °C to 150 °C.

The TS3021H comparator offers micropower consumption as low as a few tens of microamperes thus providing an excellent ratio of power consumption current versus response time

The TS3021H includes push-pull outputs and is available in the small SOT23-5 package.

Contents TS3021H

Contents

1	Absolut	te maximum ratings and operating conditions	
2	Electric	al characteristics	
3	Packag	e information	15
	3.1	SOT23-5 package information	16
4	Orderin	g information	17
5	Revisio	n history	18

1 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit	
Vcc	Supply voltage, $V_{CC} = (V_{CC+}) - (V_{CC-})^{(1)}$	5.5		
V_{ID}	Differential input voltage (2)	±5	V	
V _{IN}	Input voltage range	(V_{CC-}) - 0.3 to (V_{CC+}) + 0.3		
I _{IN}	Input current ⁽³⁾ 10		mA	
R _{thja}	Thermal resistance junction-to-ambient (4) 250		°C ///	
R _{thjc}	Thermal resistance junction-to-case (4)	81	°C/W	
T _{stg}	Storage temperature	-65 to 160		
Tj	Junction temperature	160	°C	
T _{LEAD}	Lead temperature (soldering 10 s)	260		
ECD	HBM: human body model (5)	5000	V	
ESD	CDM: charged device model (6)	1500	V	
	Latch-up immunity	200	mA	

Table 2: Operating conditions

Symbol	Paran	Parameter			
Vcc	Cupply voltage	0 °C < Tamb < 150 °C	1.8 to 5		
	Supply voltage	-40 °C < Tamb < 150 °C	2 to 5	V	
V/	Common-mode input	-40 °C < Tamb < 85 °C	(V_{CC-}) - 0.2 to (V_{CC+}) + 0.2	V	
V _{icm}	voltage range	ltage range 85 °C < Tamb < 150 °C			
Toper	Operating temperature rang	је	-40 to 150	°C	

 $^{^{(1)}}$ All voltage values, except the differential voltage, are referenced to (Vcc-)

 $^{^{(2)}}$ The magnitude of the input and output voltages must never exceed the supply rail $\pm 0.3~V$

 $^{^{(3)}}$ The input current must be limited by a resistor in series with the inputs.

⁽⁴⁾Short circuits can cause excessive heating. These values are typical

 $^{^{(5)}}$ Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

⁽⁶⁾Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Electrical characteristics TS3021H

2 Electrical characteristics

Table 3: Electrical characteristics at VCC = 2 V, Tamb = 25 ° C, and full Vicm range (unless otherwise specified)

Symbol	Parameter	Test conditions (1)	Min.	Тур.	Max.	Unit	
.,		Tamb		0.5	6		
VIO	Input offset voltage	-40 °C < Tamb < 150 °C		0.5	7	mV	
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < Tamb < 150 °C		3	20	μV/°C	
	locate offers a surround (2)	Tamb		1	20		
I _{IO}	Input offset current (2)	-40 °C < Tamb < 150 °C			100	Λ	
l.=	Input bias current (2)	Tamb		86	160	nA	
Iв	input bias current (2)	-40 °C < Tamb < 150 °C			300		
		No load, output high, Vicm = 0 V		73	90		
	Complex assument	No load, output high, Vicm = 0 V, -40 °C < Tamb < 150 °C			115	4	
Icc	Supply current	No load, output low, Vicm = 0 V		84	105	μΑ	
		No load, output low, Vicm = 0 V, -40 °C < Tamb < 150 °C			125		
	Object singuity summers	Source		9		m 1	
Isc	Short-circuit current	Sink		10		mA	
	Outrout valta sa hisla	Isource = 1 mA	1.88	1.92		V	
V _{OH}	Output voltage high	-40 °C < Tamb < 150 °C	1.79			V	
V _{OL}	Output voltage lev	Isink = 1 mA		60	100	mV	
VOL	Output voltage low	-40 °C < Tamb < 150 °C			170	IIIV	
CMRR	Common-mode rejection ratio	0 < Vicm < 2 V		67		dB	
SVR	Supply voltage rejection	ΔVcc = 2 to 5 V, Vicm = 0 V	58	73			
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		38	60		
TP _{LH}	Propagation delay, low to	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV, -40 °C < Tamb < 150 °C			120	ns	
	high output level (3)	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		48	75		
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV, -40 °C < Tamb < 150 °C			140		

Symbol	Parameter	Test conditions (1)	Min.	Тур.	Max.	Unit
	Propagation delay, high to low output level (4)	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		40	60	
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV, -40 °C < Tamb < 150 °C			120	
TP _{HL}		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		49	75	
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV, -40 °C < Tamb < 150 °C			140	ns
T _F	Fall time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		8		
T _R	Rise time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		9		

⁽¹⁾All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

 $[\]ensuremath{^{(2)}}\textsc{Maximum}$ values include unavoidable inaccuracies of the industrial tests.

⁽³⁾Response time is measured 10%/90% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm - 100 mV to Vicm + overdrive.

⁽⁴⁾Response time is measured 10%/90% of the final output value with the following conditions: Inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm + 100 mV to Vicm - overdrive.

Table 4: Electrical characteristics at VCC = 3.3 V, Tamb = 25 $^{\circ}$ C, and full Vicm range (unless otherwise specified)

	(americanismic opering		,				
Symbol	Parameter	Test conditions (1)	Min.	Тур.	Max.	Unit	
.,		Tamb		0.2	6		
V_{IO}	Input offset voltage	-40 °C < Tamb < 150 °C		0.2	7	– mV	
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < Tamb < 150 °C		3	20	μV/°C	
	line at a summer of (2)	Tamb		1	20		
lιο	Input offset current (2)	-40 °C < Tamb < 150 °C			100	^	
	locat bios suggest (2)	Tamb		86	160	nA	
I _{IВ}	Input bias current (2)	-40 °C < Tamb < 150 °C			300		
		No load, output high, Vicm = 0 V		75	90		
		No load, output high, Vicm = 0 V, -40 °C < Tamb < 150 °C			120	_	
lcc	Supply current	No load, output low, Vicm = 0 V		86	110	μΑ	
		No load, output low, Vicm = 0 V, -40 °C < Tamb < 150 °C			125		
	Isc Short-circuit current	Source		26		mA	
Isc		Sink		24			
.,	0	Isource = 1 mA	3.20	3.25		V	
Voh	Output voltage high	-40 °C < Tamb < 150 °C	3.16				
\/	Output voltage law	Isink = 1 mA		40	80	m\/	
V_{OL}	Output voltage low	-40 °C < Tamb < 150 °C			120	mV	
CMRR	Common-mode rejection ratio	0 < Vicm < 3.3 V		75		dB	
SVR	Supply voltage rejection	$\Delta Vcc = 2 \text{ to 5 V, Vicm} = 0 \text{ V}$	58	73			
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		39	65		
ТР _{ІН}	Propagation delay, low to high output level ⁽³⁾	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV, -40 °C < Tamb < 150 °C			115	ns	
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		50	85		
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV, -40 °C < Tamb < 150 °C			145		

Symbol	Parameter	Test conditions (1)	Min.	Тур.	Max.	Unit
	Propagation delay, high to low output level ⁽⁴⁾	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		41	65	
TD		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV, -40 °C < Tamb < 150 °C			115	
TP _{HL}		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		51	80	
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV, -40 °C < Tamb < 150 °C			145	ns
T _F	Fall time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		5		
T _R	Rise time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		7		

⁽¹⁾All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

 $[\]ensuremath{^{(2)}}\textsc{Maximum}$ values include unavoidable inaccuracies of the industrial tests

⁽³⁾Response time is measured 10%/90% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm - 100 mV to Vicm + overdrive.

 $^{^{(4)}}$ Response time is measured 10%/90% of the final output value with the following conditions: Inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm + 100 mV to Vicm - overdrive.

Table 5: Electrical characteristics at VCC = 5 V, Tamb = 25 $^{\circ}$ C, and full Vicm range (unless otherwise specified)

Symbol	Parameter	Test conditions (1)	Min.	Тур.	Max.	Unit
V _{IO}	Input offeet voltage	Tamb		0.2	6	mV
VIO	Input offset voltage	-40 °C < Tamb < 150 °C		0.2	7	1117
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < Tamb < 150 °C		3	20	μV/°C
lia	Input offset current (2)	Tamb		1	20	
lιο	input onset current 🗸	-40 °C < Tamb < 150 °C			100	nA
lin	Input bias current ⁽²⁾	Tamb		86	160	IIA
I _{IВ}	input bias current	-40 °C < Tamb < 150 °C			300	
		No load, output high, Vicm = 0 V		77	95	
·	O. and b. a. and a	No load, output high, Vicm = 0 V, -40 °C < Tamb < 150 °C			125	
lcc	Supply current	No load, output low, Vicm = 0 V		89	115	μΑ
		No load, output low, Vicm = 0 V, -40 °C < Tamb < 150 °C			135	
	Short-circuit current	Source		51		A
Isc		Sink		40		mA
V/	Output voltage high	Isource = 4 mA	4.80	4.84		V
Vон		-40 °C < Tamb < 150 °C	4.68			V
V_{OL}	Output voltage low	Isink = 4 mA		130	180	mV
VOL	Output voltage low	-40 °C < Tamb < 150 °C			270	111 V
CMRR	Common-mode rejection ratio	0 < Vicm < 5 V		79		dB
SVR	Supply voltage rejection	ΔVcc = 2 to 5 V, Vicm = 0 V	58	73		
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		42	75	
TD	Propagation delay, low to	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV, -40 °C < Tamb < 150 °C			120	ns ns
TP _{LH}	high output level (3)	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		54	105	
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV, -40 °C < Tamb < 150 °C			150	

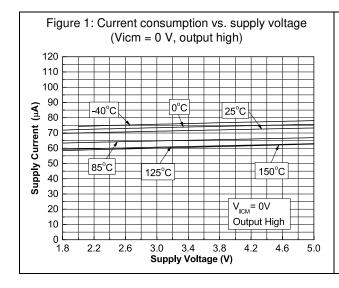
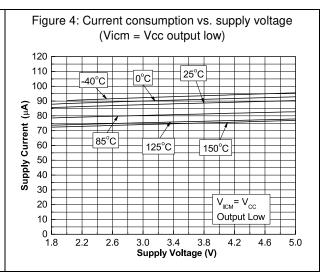
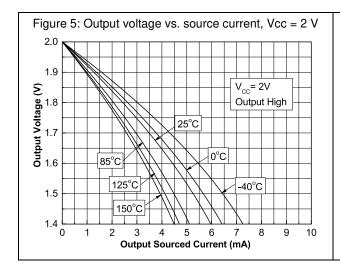
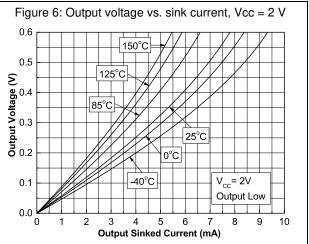
Symbol	Parameter	Test conditions (1)	Min.	Тур.	Max.	Unit
	Propagation delay, high to low output level ⁽⁴⁾	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		45	75	
TP _{HL}		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV, -40 °C < Tamb < 150 °C			120	
IFHL		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		55	95	
		Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV, -40 °C < Tamb < 150 °C			150	ns
T _F	Fall time	$f = 10 \text{ kHz}$, $CL = 50 \text{ pF}$, $RL = 10 \text{ k}\Omega$, overdrive = 100 mV		4		
T _R	Rise time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		4		

⁽¹⁾All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

 $[\]ensuremath{^{(2)}}\textsc{Maximum}$ values include unavoidable inaccuracies of the industrial tests

⁽³⁾Response time is measured 10%/90% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm - 100 mV to Vicm + overdrive.

 $^{^{(4)}}$ Response time is measured 10%/90% of the final output value with the following conditions: Inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm + 100 mV to Vicm - overdrive.

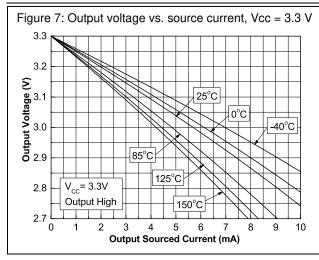

Figure 2: Current consumption vs. supply voltage (Vicm = Vcc output high) 120 0°C 25°C 110 100 90 Ŧ 80 85°C Supply Current 70 125°C 150°C 60 50 40 30 V_{ICM}= V_{CC} Output High 20 10 0 □ 1.8 2.2 2.6 3.0 3.4 3.8 4.6 5.0

Figure 3: Current consumption vs. supply voltage (Vicm = 0 V, output low) 120 110 100 -40°C 25°C 90 <u>F</u> 80 **Supply Current** 70 60 85°C 125°C 150°C 50 40 30 V_{ICM}= 0V 20 Output Low 10 0 L 1.8 3.0 3.4 3.8 Supply Voltage (V) 2.2 2.6 4.6 5.0

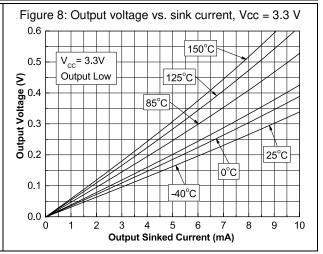


Figure 9: Output voltage vs. source current, Vcc = 5 V

4.9

25°C

4.9

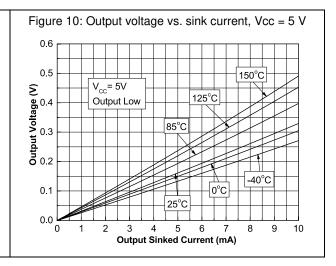
4.7

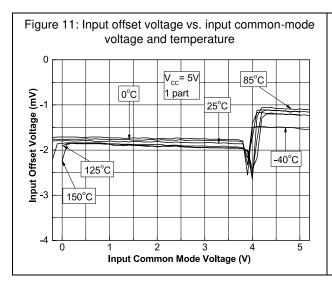
5.0

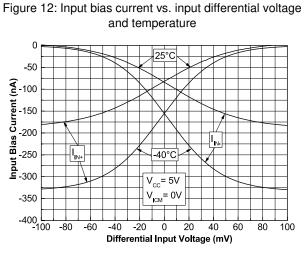
4.9

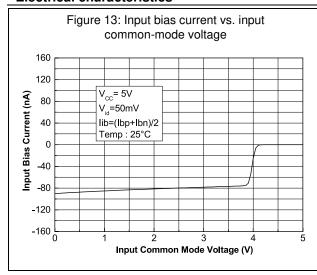
25°C

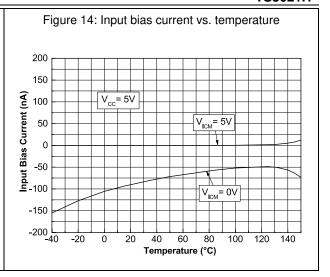
4.0°C

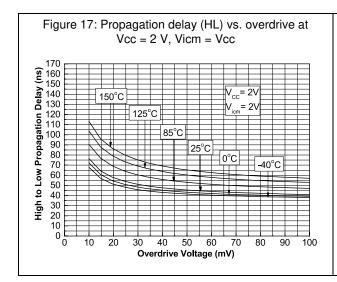

4.5

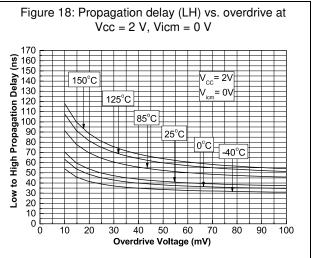

4.5

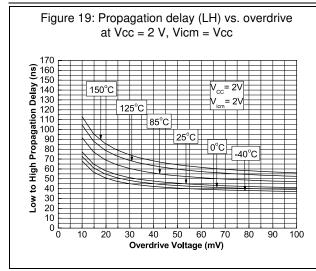
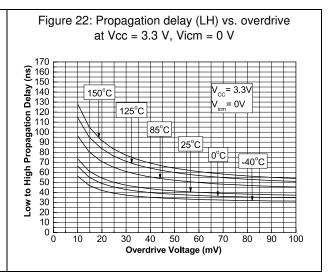
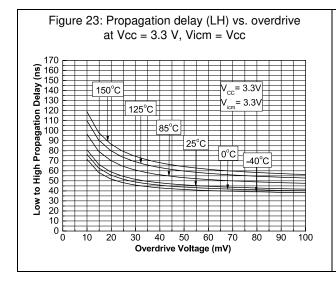
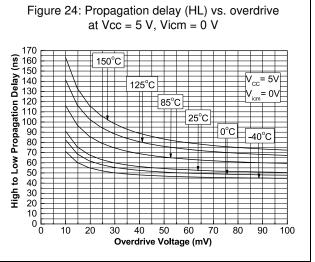

4.4

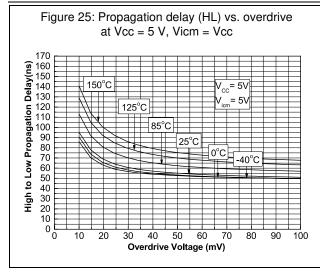

0 1 2 3 4 5 6 7 8 9 10

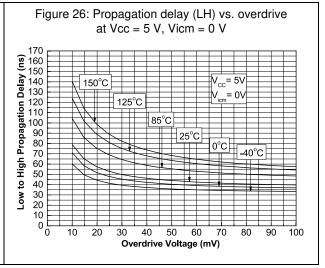

Output Sourced Current (mA)

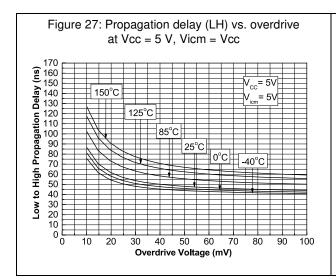


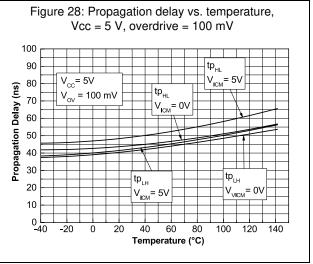


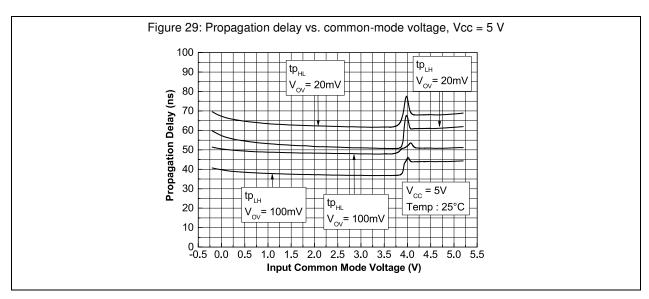






Figure 21: Propagation delay (HL) vs. overdrive at Vcc = 3.3 V, Vicm = Vcc


170
160
150
150
150
120
120
125°C
100°C
100







TS3021H Package information

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

3.1 SOT23-5 package information

Figure 30: SOT23-5 package outline

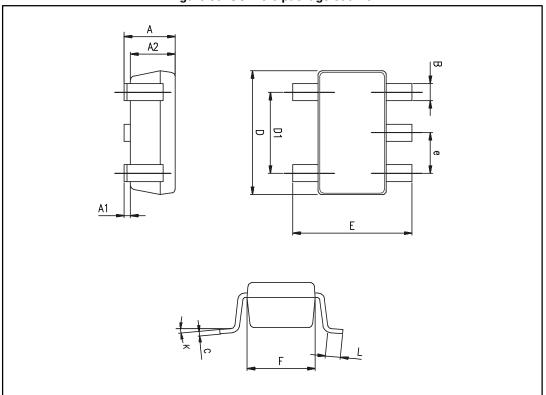


Table 6: SOT23-5 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.014	0.016	0.020	
С	0.09	0.15	0.20	0.004	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
Е	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.014	0.024	
K	0 degrees		10 degrees	0 degrees		10 degrees	

4 Ordering information

Table 7: Order codes

Order code	Temperature range	Package	Packaging	Marking
TS3021HIYLT (1)	-40 to 150 °C	SOT23-5	Tape and reel	K528

Notes:

 $^{(1)}$ Qualified and characterized according to AEC-Q100 and Q003 or equivalent, advanced screening according to AEC-Q001 and Q 002 or equivalent.

Revision history TS3021H

5 Revision history

Table 8: Document revision history

Date	Version	Changes
13-Oct-2015	1	Initial release
24-Aug-2016	2	Updated document title (automotive qualified) Added AEC-Q100 and Q003 qualified in Features section Table 1: "Absolute maximum ratings (AMR)": removed ESD MM value. Table 7: "Order codes": updated footnote, product is now automotive qualified.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

