MOSFET - Dual N-Channel, Asymmetric, **POWERTRENCH[®]** Power Clip 30 V

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFET[™] (Q2) have been designed to provide optimal power efficiency.

Features

Q1: N-Channel

- Max $R_{DS(on)} = 5.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 17 \text{ A}$
- Max $R_{DS(on)} = 6.5 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 14 \text{ A}$

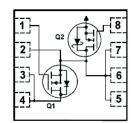
Q2: N-Channel

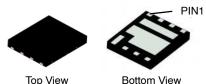
- Max $R_{DS(on)} = 2.4 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 25 \text{ A}$
- Max $R_{DS(on)} = 3.0 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 22 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses.
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing.
- RoHS Compliant

Applications

- Computing
- Communications
- General Purpose Point of Load

Table 1. PIN DESCRIPTION


Pin	Name	Description
1	HSG	High Side Gate
2	GR	Gate Return
3, 4, 10	V+(HSD)	High Side Drain
5, 6, 7	SW	Switching Node, Low Side Drain
8	LSG	Low Side Gate
9	GND (LSS)	Low Side Source


ON Semiconductor®

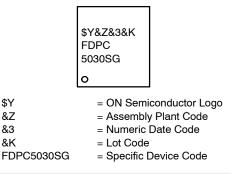
www.onsemi.com

ELECTRICAL CONNECTION

N-Channel MOSFET

Top View

Power Clip 56


(PQFN8 5x6) CASE 483AR

PIN ASSIGNMENT

*PAD10 V+(HSD)

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Parameter	Q1	Q2	Unit
V _{DS}	Drain to Source Voltage	30	30	V
Bvdsst	Bvdsst (Transient) < 100 ns	36	36	V
V _{GS}	Gate to Source Voltage	+/-20	+/-12	V
Ι _D	Drain Current – Continuous (T _C = 25°C) (Note 5)	56	84	A
	– Continuous (T _C = 100°C) (Note 5)	35	53	
	– Continuous (T _A = 25°C)	17 (Note 1a)	25 (Note 1b)	
	– Pulsed (T _A = 25°C) (Note 4)	227	503	
E _{AS}	Single Pulsed Avalanche Energy (Note 3)	54	96	mJ
P _D	Power Dissipation for Single Operation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	23 2.1 (Note 1a) 1.0 (Note 1c)	25 2.3 (Note 1b) 1.1 (Note 1d)	W
TJ, T _{STG}	Operating and Storage Junction Temperature Range	Range _55 to +150		°C

MOSFET MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	5.6	4.9	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	60 (Note 1a)	55 (Note 1b)	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	130 (Note 1c)	120 (Note 1d)	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Device	Top Marking	Package	Reel Size	Tape Width	Quantity
FDPC5030SG	FDPC5030SG	Power Clip 56	13″	12 mm	3,000 Units

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Unit
OFF CHARAC	TERISTICS						•
BV _{DSS}	Drain to Source Breakdown Voltage	$ I_D = 250 \; \mu \text{A}, \; V_{GS} = 0 \; \text{V} \\ I_D = 1 \; \text{mA}, \; V_{GS} = 0 \; \text{V} $	Q1 Q2	30 30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2	- -	15 16		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	Q1 Q2	-		1 500	μΑ
I _{GSS}	Gate to Source Leakage Current, Forward		Q1 Q2	-	-	±100 ±100	nA nA

ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	$\label{eq:VGS} \begin{array}{l} V_{GS} = V_{DS}, \ I_D = 250 \ \mu A \\ V_{GS} = V_{DS}, \ I_D = 1 \ m A \end{array}$	Q1 Q2	1.0 1.0	1.7 1.6	3.0 3.0	V
$\Delta V_{GS(th)}/\Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 1 μ A, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2	-	-5 -3	-	mV/°C

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

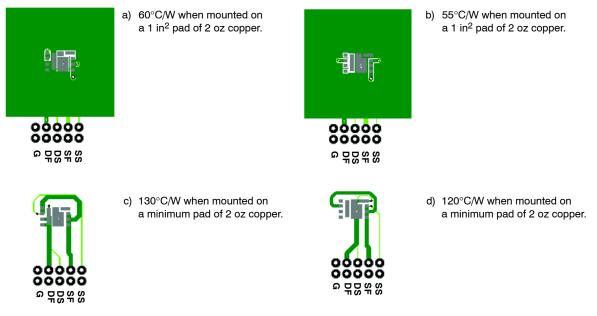
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Unit
ON CHARAC	TERISTICS						
R _{DS(on)}	Drain to Source On Resistance	$ \begin{array}{c} V_{GS} = 10 \; V, \; I_D = 17 \; A \\ V_{GS} = 4.5 \; V, \; I_D = 14 \; A \\ V_{GS} = 10 \; V, \; I_D = 17 \; A, \; T_J = 125 ^{\circ} C \end{array} $	Q1	_ _ _	4.1 5.4 5.7	5.0 6.5 7.0	mΩ
			Q2		1.9 2.4 2.7	2.4 3.0 3.4	
9fs	Forward Transconductance	$V_{DS} = 5 V, I_D = 17 A$ $V_{DS} = 5 V, I_D = 25 A$	Q1 Q2	-	93 139	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	Q1: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		1224 2730	1715 3825	pF
C _{oss}	Output Capacitance	Q2: $V_{DS} = 15 V, V_{GS} = 0 V,$	Q1 Q2		397 801	560 1125	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHZ	Q1 Q2		42 72	60 100	pF
R _g	Gate Resistance		Q1 Q2	0.1 0.1	0.5 1.1	1.5 2.2	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	Q1: $V_{DD} = 15 V, I_D = 17 A,$	Q1 Q2	-	8 10	16 19	ns
t _r	Rise Time		Q1 Q2		2 4	10 10	ns
t _{d(off)}	Turn-Off Delay Time	$R_{GEN} = 6 \Omega$	Q1 Q2		18 30	33 48	ns
t _f	Fall Time		Q1 Q2		2 3	10 10	ns
Qg	Total Gate Charge		Q1 Q2		17 39	24 55	nC
Qg	Total Gate Charge		Q1 Q2		8 18	11 26	nC
Q _{gs}	Gate to Source Gate Charge	Q1: V _{DD} = 15 V, I _D = 17 A Q2: V _{DD} = 15 V, I _D = 25 A	Q1 Q2		3.1 6.1		nC
Q _{gd}	Gate to Drain "Miller" Charge	Q1: V_{DD} = 15 V, I_D = 17 A Q2: V_{DD} = 15 V, I_D = 25 A	Q1 Q2	_	2.0 4.3		nC


SOURCE-DRAIN DIODE CHARACTERISTICS

V _{SD}	Source to Drain Diode Forward Voltage		Q1 Q2	-	0.8 0.8	1.2 1.2	V
t _{rr}	Reverse Recovery Time	Q1 I _F = 17 A, di/dt = 100 A/µs Q2	Q1 Q2	_	23 27	37 44	ns
Q _{rr}	Reverse Recovery Charge	l _F = 25 A, di/dt = 230 A/μs	Q1 Q2	-	8 31	16 50	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{θCA} is determined by the user's board design.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 Q1: E_{AS} of 54 mJ is based on starting T_J = 25°C; L = 3 mH, I_{AS} = 6 A, V_{DD} = 30 V. V_{GS} = 10 V, 100% tested at L = 0.1 mH, I_{AS} = 20 A. Q2: E_{AS} of 96 mJ is based on starting T_J = 25°C; L = 3 mH, I_{AS} = 8 A, V_{DD} = 30 V. V_{GS} = 10 V, 100% tested at L = 0.1 mH, I_{AS} = 27 A.
 Pulsed Id refer to Figure NO TAG and Figure NO TAG SOA graphs for more details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & elevier anotherized explanation provides the starting the start of the start of
- electro-mechanical application board design.

TYPICAL CHARACTERISTICS (Q1 N-Channel)

(T_J = $25^{\circ}C$ unless otherwise noted)

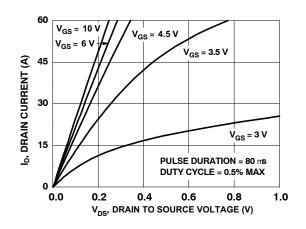


Figure 1. On Region Characteristics

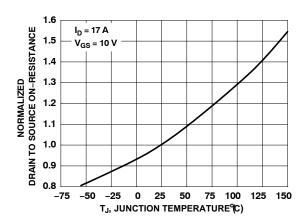


Figure 3. Normalized On Resistance vs. Junction Temperature



Figure 5. Transfer Characteristics

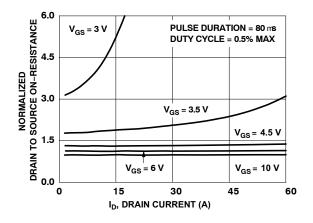
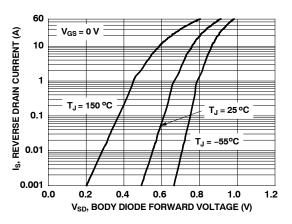
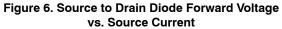




Figure 2. Normalized On-Resistance vs. Drain **Current and Gate Voltage**

Figure 4. Normalized On Resistance vs. Gate to Source Voltage

www.onsemi.com

TYPICAL CHARACTERISTICS (Q1 N-Channel)

(T_J = 25°C unless otherwise noted)

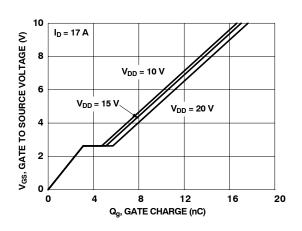


Figure 7. Gate Charge Characteristics

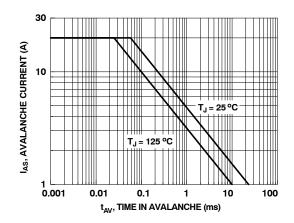


Figure 9. Unclamped Inductive Switching Capability

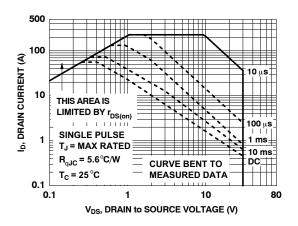


Figure 11. Forward Bias Safe Operating Area

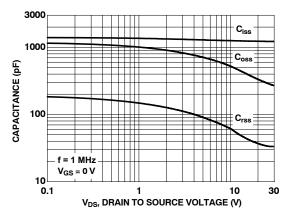


Figure 8. Capacitance vs. Drain to Source Voltage

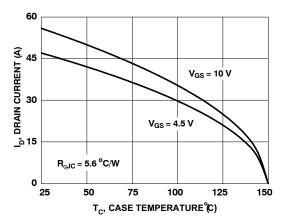


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

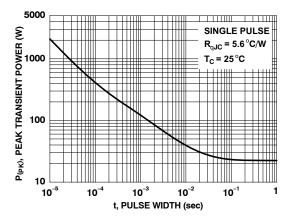


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q1 N-Channel)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

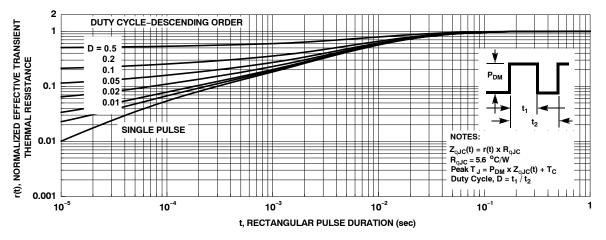


Figure 13. Junction-to-Case Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 N-Channel)

(T_J = 25°C unless otherwise noted)

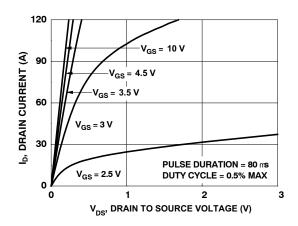


Figure 14. On-Region Characteristics

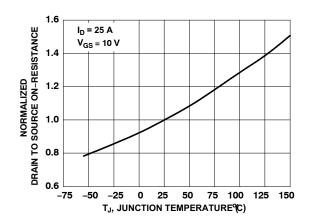


Figure 16. Normalized On–Resistance vs. Junction Temperature

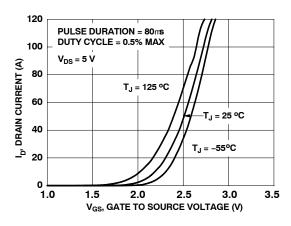


Figure 18. Transfer Characteristics

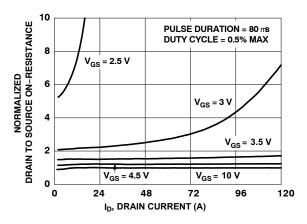


Figure 15. Normalized on-Resistance vs. Drain Current and Gate Voltage

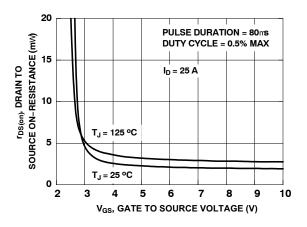


Figure 17. On-Resistance vs. Gate to Source Voltage

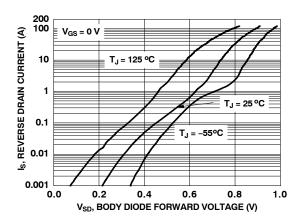


Figure 19. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Q2 N-Channel)

(T_J = 25°C unless otherwise noted)

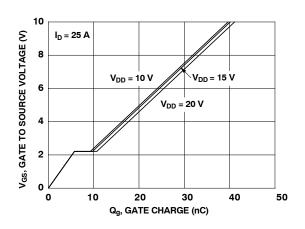


Figure 20. Gate Charge Characteristics

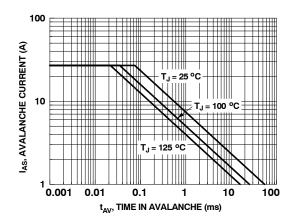


Figure 22. Unclamped Inductive Switching Capability

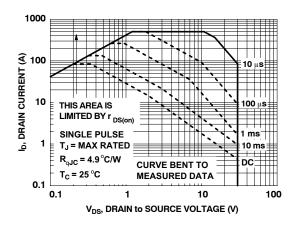


Figure 24. Forward Bias Safe Operating Area

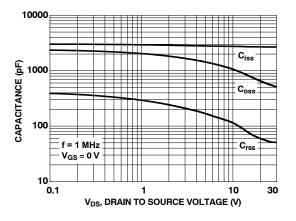


Figure 21. Capacitance vs. Drain to Source Voltage

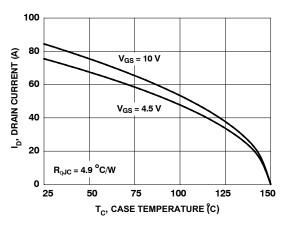


Figure 23. Maximum Continuous Drain Current vs. Case Temperature

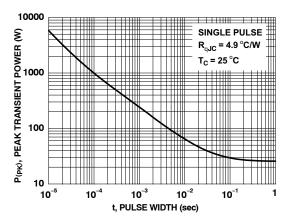


Figure 25. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q2 N-Channel)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

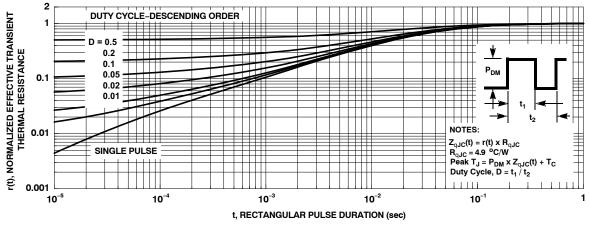


Figure 26. Junction-to-Case Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (continued)

SyncFET Schottky Body Diode Characteristics

ON's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDPC5030SG.

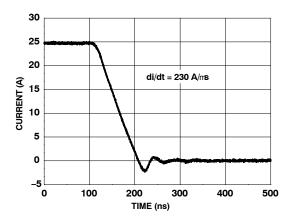


Figure 27. FDPC5030SG SyncFET[™] Body Diode Reverse Recovery Characteristics

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

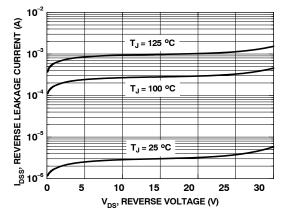


Figure 28. SyncFET[™] Body Diode Reverse Leakage vs. Drain–Source Voltage

POWERTRENCH is a registered trademark and SyncFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PKG

TOP VIEW

-D2

6 . 7

т Φ

e1

-e-

Ģ

4

A

0

8

В

0.10 C

2X

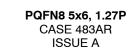
SEE

// 0.10 C

Á

0.10 C

2X


PKG Q.

INDICATOR

PIN #1-/5

(z1)-

E2

(A3)

DETAIL A

(SCALE: 2X)

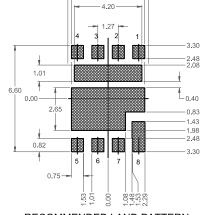
A1

5.00

4.56

DATE 21 MAY 2021

NOTES: UNLESS OTHERWISE SPECIFIED


- A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229, DATED 11/2001.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

ЫМ	N	ILLIMET	ERS		
	MIN.	NOM.	MAX.		
A	0.70	0.75	0.80		
A1	0.00	-	0.05		
A3	C	.20 REF			
b	().51 BSC			
D	4.90	5.00	5.10		
D2	3.05	3.15	3.25		
D3	4.12	4.22	4.32		
D4	3.80	3.90	4.00		
E	5.90	6.00	6.10		
E2	2.36	2.46	2.56		
E3	0.81	0.91	1.01		
E4	1.27	1.37	1.47		
е	,	1.27 BSC			
e/2	().635 BS	С		
e1		3.81 BSC	;		
k	0.42	0.52	0.62		
L	0.38	0.48	0.58		
L4	1.47 1.57 1.67				
z	0.55 REF				
z1		0.39 REF			

DETAIL A SIDE VIEW 1.01 Ŧ 6.60 -b (8X) 0.00 8 Φ 0.82

1 E3 Ţ ф Φ đħ m X 3 2 e/2

BOTTOM VIEW

C

SEATING

PLANE

RECOMMENDED LAND PATTERN

***FOR ADDITIONAL INFORMATION ON OUR** PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13666G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION: PQFN8 5x6, 1.27P PAGE 1 OF 1								
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically					

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales