500 mA Negative Voltage **Regulators**

The MC79M00 series of fixed output negative voltage regulators are intended as complements to the popular MC78M00 series devices.

Available in fixed output voltage options of -5.0 V, -8.0 V, -12 V and -15 V, these regulators employ current limiting, thermal shutdown, and safe-area compensation, making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 0.5 A.

Features

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Also Available in Surface Mount DPAK (DT) Package
- Pb-Free Packages are Available

July, 2013 - Rev. 15

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

Device	Nominal Output Voltage
MC79M05	−5.0 V
MC79M08	−8.0 V
MC79M12	−12 V
MC79M15	−15 V

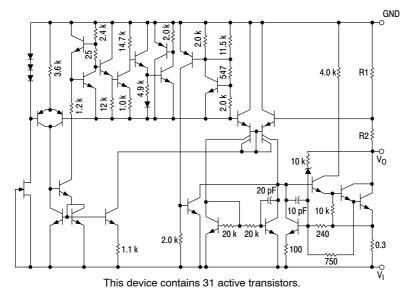
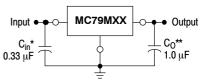
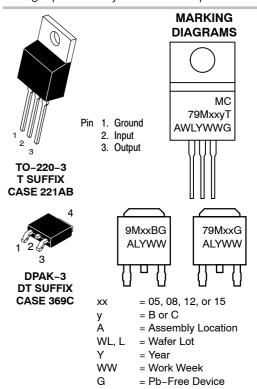


Figure 1. Representative Schematic Diagram



ON Semiconductor®

http://onsemi.com


THREE-TERMINAL **NEGATIVE FIXED VOLTAGE REGULATORS**

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 1.1 V more negative even during the high point of the input ripple voltage. XX These two digits of the type number indicate nominal voltage.

- Cin is required if regulator is located an appreciable distance from power supply filter.
- ** C_O improve stability and transient response.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted.)

Rating	Symbo	l Value	Unit
Input Voltage	VI	-35	Vdc
Power Dissipation			
Case 221A (TO-220-3)			
T _A = 25°C	P _D	Internally Limited	W
Thermal Resistance, Junction-to-Ambient	$\theta_{\sf JA}$	65	°C/W
Thermal Resistance, Junction-to-Case	θJC	5.0	°C/W
Case 369C (DPAK-3)			
T _A = 25°C	P _D	Internally Limited	W
Thermal Resistance, Junction-to-Ambient	$\theta_{\sf JA}$	92	°C/W
Thermal Resistance, Junction-to-Case	θJC	6.0	°C/W
Storage Junction Temperature	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	TJ	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Human Body Model 2000 V per MIL_STD_883, Method 3015

Machine Model Method 200 V

MC79M05B, C **ELECTRICAL CHARACTERISTICS** ($V_I = -10 \text{ V}$, $I_O = 350 \text{ mA}$, T_{low} to T_{high} (Note 2), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	-4.8	-5.0	-5.2	Vdc
Line Regulation, $T_J = 25^{\circ}C$ (Note 1) $-7.0 \text{ Vdc} \ge V_I \ge -25 \text{ Vdc}$ $-8.0 \text{ Vdc} \ge V_I \ge -18 \text{ Vdc}$	Reg _{line}	- -	7.0 2.0	50 30	mV
Load Regulation, $T_J = 25^{\circ}C$ (Note 1) 5.0 mA $\leq I_O \leq 500$ mA	Reg _{load}	_	30	100	mV
Output Voltage $ -7.0 \text{ Vdc} \geq V_{I} \geq -25 \text{ Vdc}, \ 5.0 \text{ mA} \leq I_{O} \leq 350 \text{ mA} $	Vo	-4.75	-	-5.25	Vdc
Input Bias Current (T _J = 25°C)	I _{IB}	-	4.3	8.0	mA
Input Bias Current Change $-8.0~Vdc \geq V_l \geq -25~Vdc,~I_O = 350~mA \\ 5.0~mA \leq I_O \leq 350~mA,~V_l = -10~V$	Δl_{IB}	- -	- -	0.4 0.4	mA
Output Noise Voltage, $T_A = 25^{\circ}C$, 10 Hz \leq f \leq 100 kHz	V _n	-	40	-	μV
Ripple Rejection (f = 120 Hz)	RR	54	66	-	dB
Dropout Voltage $I_O = 500 \text{ mA}, T_J = 25^{\circ}\text{C}$	V _I -V _O	_	1.1	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0$ mA, $0^{\circ}C \le T_J \le 125^{\circ}C$	$\Delta V_{O}/\Delta T$	-	0.2	-	mV/°C

Load and line regulation are specified at constant temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
 B = T_{low} to T_{high}, -40°C < T_J < 125°C C = T_{low} to T_{high}, 0°C < T_J < 125°C.

^{*}This device series contains ESD protection and exceeds the following tests:

MC79M08B, C ELECTRICAL CHARACTERISTICS (V_I = -10 V, I_O = 350 mA, T_{low} to T_{high} (Note 4), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	-7.7	-8.0	-8.3	Vdc
Line Regulation, $T_J = 25^{\circ}C$ (Note 3) $-10.5 \text{ Vdc} \ge V_I \ge -25 \text{ Vdc}$ $-11 \text{ Vdc} \ge V_I \ge -21 \text{ Vdc}$	Reg _{line}	1 1	5.0 3.0	80 50	mV
Load Regulation, T_J = 25°C (Note 3) 5.0 mA $\leq I_O \leq$ 500 mA	Reg _{load}	-	30	100	mV
Output Voltage $-10.5 \text{ Vdc} \geq V_{I} \geq -25 \text{ Vdc}, \ 5.0 \text{ mA} \leq I_{O} \leq 350 \text{ mA}$	Vo	-7.6	-8.0	-8.4	Vdc
Input Bias Current (T _J = 25°C)	I _{IB}	-	-	8.0	mA
Input Bias Current Change $ -10.5 \text{ Vdc} \ge V_l \ge -25 \text{ Vdc}, \ I_O = 350 \text{ mA} \\ 5.0 \text{ mA} \le I_O \le 350 \text{ mA}, \ V_l = -10 \text{ V} $	$\Delta l_{ m lB}$	- -	- -	0.4 0.4	mA
Output Noise Voltage, T_A = 25°C, 10 Hz \leq f \leq 100 kHz	V _n	-	60	-	μV
Ripple Rejection (f = 120 Hz)	RR	54	63	-	dB
Dropout Voltage I _O = 500 mA, T _J = 25°C	V _I –V _O	-	1.1	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0$ mA, $0^{\circ}C \le T_J \le 125^{\circ}C$	$\Delta V_{O}/\Delta T$	ı	0.4	-	mV/°C

Load and line regulation are specified at constant temperature. Change in V_O due to heating effects must be taken into account separately.
 Pulse testing with low duty cycle is used.

MC79M12B, C ELECTRICAL CHARACTERISTICS ($V_I = -19 \text{ V}$, $I_O = 350 \text{ mA}$, T_{low} to T_{high} (Note 6), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	V _O	-11.5	-12	-12.5	Vdc
Line Regulation, $T_J = 25^{\circ}C$ (Note 5) $-14.5 \text{ Vdc} \ge V_I \ge -30 \text{ Vdc}$ $-15 \text{ Vdc} \ge V_I \ge -25 \text{ Vdc}$	Reg _{line}	_ _	5.0 3.0	80 50	mV
Load Regulation, $T_J = 25^{\circ}C$ (Note 5) 5.0 mA $\leq I_O \leq$ 500 mA	Reg _{load}	-	30	240	mV
Output Voltage $-14.5 \text{ Vdc} \geq V_I \geq -30 \text{ Vdc}, 5.0 \text{ mA} \leq I_O \leq 350 \text{ mA}$	V _O	-11.4	-	-12.6	Vdc
Input Bias Current (T _J = 25°C)	I _{IB}	-	4.4	8.0	mA
Input Bias Current Change -14.5 Vdc \geq V _I \geq -30 Vdc, I _O = 350 mA 5.0 mA \leq I _O \leq 350 mA, V _I = -19 V	$\Delta l_{ m IB}$	- -	- -	0.4 0.4	mA
Output Noise Voltage, T _A = 25°C, 10 Hz ≤ f ≤ 100 kHz	V _n	-	75	-	μV
Ripple Rejection (f = 120 Hz)	RR	54	60	-	dB
Dropout Voltage $I_O = 500$ mA, $T_J = 25$ °C	V _I –V _O	-	1.1	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}, 0^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$	$\Delta V_{O}/\Delta T$	_	-0.8	-	mV/°C

Load and line regulation are specified at constant temperature. Change in V_O due to heating effects must be taken into account separately.
 Pulse testing with low duty cycle is used.

Pulse testing with low duty cycle is used.

4. B = T_{low} to T_{high}, -40°C < T_J < 125°C
C = T_{low} to T_{high}, 0°C < T_J < 125°C

Pulse testing with low duty cycle is used.

6. B = T_{low} to T_{high}, -40°C < T_J < 125°C
C = T_{low} to T_{high}, 0°C < T_J < 125°C

MC79M15B, C ELECTRICAL CHARACTERISTICS ($V_I = -23 \text{ V}$, $I_O = 350 \text{ mA}$, T_{low} to T_{high} (Note 8), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	-14.4	-15	-15.6	Vdc
Line Regulation, $T_J = 25^{\circ}C$ (Note 7) -17.5 Vdc \geq V $_I \geq$ -30 Vdc -18 Vdc \geq V $_I \geq$ -28 Vdc	Reg _{line}	<u>-</u>	5.0 3.0	80 50	mV
Load Regulation, $T_J = 25$ °C (Note 7) 5.0 mA $\leq I_O \leq 500$ mA	Reg _{load}	_	30	240	mV
Output Voltage $-17.5 \text{ Vdc} \geq V_{I} \geq -30 \text{ Vdc}, 5.0 \text{ mA} \leq I_{O} \leq 350 \text{ mA}$	Vo	-14.25	-	-15.75	Vdc
Input Bias Current (T _J = 25°C)	I _{IB}	-	4.4	8.0	mA
Input Bias Current Change -17.5 Vdc \geq V $_{I}$ \geq -30 Vdc, I $_{O}$ = 350 mA 5.0 mA \leq I $_{O}$ \leq 350 mA, V $_{I}$ = -23 V	ΔI_{IB}	- -	- -	0.4 0.4	mA
Output Noise Voltage, T _A = 25°C, 10 Hz ≤ f ≤ 100 kHz	V _n	-	90	-	μV
Ripple Rejection (f = 120 Hz)	RR	54	60	-	dB
Dropout Voltage I _O = 500 mA, T _J = 25°C	V _I –V _O	-	1.1		Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}, 0^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C}$	$\Delta V_{O}/\Delta T$	-	-1.0	-	mV/°C

^{7.} Load and line regulation are specified at constant temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

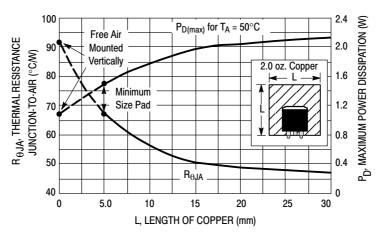


Figure 1. DPAK-3 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Pulse testing with low duty cycle is used.

8. B = T_{low} to T_{high}, -40°C < T_J < 125°C
C = T_{low} to T_{high}, 0°C < T_J < 125°C

Protection Diodes

When external capacitors are used with MC79M00 series regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator or from output polarity reversals. Generally, no protection diode is required for values of output capacitance less then $10\mu F$. Figure 2 shows the MC79M15 with the recommended protection diodes.

• Opposite Polarity Protection

Diode D1 protects the regulator from output polarity reversals during startup, power off and short-circuit operation.

• Reverse-bias Protection

Diode D2 prevents output capacitor from discharging thru the MC79M15 during an input short circuit or fast switch off of power supply.

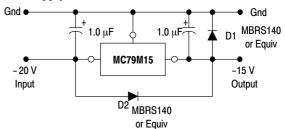


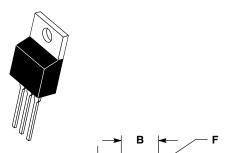
Figure 2. Protection Diodes

ORDERING INFORMATION

Device	Output Voltage Tolerance	Operating Temperature Range	Package	Shipping [†]
MC79M05BDT			DPAK	75 Units / Rail
MC79M05BDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M05BDTRK			DPAK	2500 Units / Reel
MC79M05BDTRKG		$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	DPAK (Pb-Free)	2500 Units / Reel
MC79M05BT			TO-220	50 Units / Rail
MC79M05BTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M05CDT			DPAK	75 Units / Rail
MC79M05CDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M05CDTRK			DPAK	2500 Units / Reel
MC79M05CDTRKG		$T_{J} = 0^{\circ}\text{C to } +125^{\circ}\text{C}$	DPAK (Pb-Free)	2500 Units / Reel
MC79M05CT			TO-220	50 Units / Rail
MC79M05CTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M08BDT			DPAK	75 Units / Rail
MC79M08BDTRK			DPAK	2500 Units / Reel
MC79M08BDTRKG		T _J = -40°C to +125°C	DPAK (Pb-Free)	2500 Units / Reel
MC79M08BT			TO-220	50 Units / Rail
MC79M08BTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M08CDT	4.0%		DPAK	75 Units / Rail
MC79M08CDTG	1.675		DPAK (Pb-Free)	75 Units / Rail
MC79M08CDTRK			DPAK	2500 Units / Reel
MC79M08CDTRKG		$T_{J} = 0^{\circ}\text{C to } +125^{\circ}\text{C}$	DPAK (Pb-Free)	2500 Units / Reel
MC79M08CT			TO-220	50 Units / Rail
MC79M08CTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M12BDT			DPAK	75 Units / Rail
MC79M12BDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M12BDTRK			DPAK	2500 Units / Reel
MC79M12BDTRKG		$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	DPAK (Pb-Free)	2500 Units / Reel
MC79M12BT			TO-220	50 Units / Rail
MC79M12BTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M12CDT			DPAK	75 Units / Rail
MC79M12CDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M12CDTRK			DPAK	2500 Units / Reel
MC79M12CDTRKG		$T_J = 0^{\circ}\text{C to } +125^{\circ}\text{C}$	DPAK (Pb-Free)	2500 Units / Reel
MC79M12CT			TO-220	50 Units / Rail
MC79M12CTG			TO-220 (Pb-Free)	50 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION


Device	Output Voltage Tolerance	Operating Temperature Range	Package	Shipping†
MC79M15BDT			DPAK	75 Units / Rail
MC79M15BDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M15BDTRK	1		DPAK	2500 Units / Reel
MC79M15BDTRKG		$T_{J} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	DPAK (Pb-Free)	2500 Units / Reel
MC79M15BT	1		TO-220	50 Units / Rail
MC79M15BTG			TO-220 (Pb-Free)	50 Units / Rail
MC79M15CDT	4.0%		DPAK	75 Units / Rail
MC79M15CDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M15CDTRK			DPAK	2500 Units / Reel
MC79M15CDTRKG		T _J = 0°C to +125°C	DPAK (Pb-Free)	2500 Units / Reel
MC79M15CT			TO-220	50 Units / Rail
MC79M15CTG			TO-220 (Pb-Free)	50 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

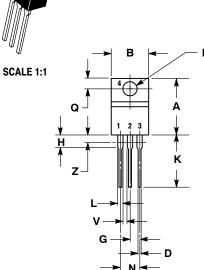
MECHANICAL CASE OUTLINE

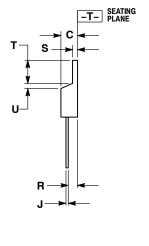
PACKAGE DIMENSIONS

TO-220, SINGLE GAUGE CASE 221AB-01 **ISSUE A**

DATE 16 NOV 2010

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCHES.

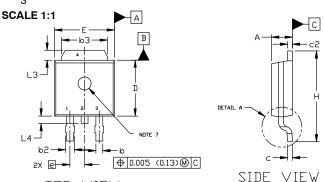
 3. DIMENSION 2 DEFINES A ZONE WHERE ALL BODY AND LEAD INREGULARTIES ARE ALLOWED.

 4. PRODUCT SHIPPED PRIOR TO 2008 HAD DIMENSIONS S = 0.045 0.055 INCHES (1.143 1.397 MM)

	INCHES MIL			IETERS
DIM	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.020	0.024	0.508	0.61
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 1:		STYLE 2:		STYLE 3:	
PIN 1.	BASE	PIN 1.	BASE	PIN 1.	CATHODE
2.	COLLECTOR	2.	EMITTER	2.	ANODE
3.	EMITTER	3.	COLLECTOR	3.	GATE
4.	COLLECTOR	4.	EMITTER	4.	ANODE
STYLE 5:		STYLE 6:		STYLE 7:	
PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE
2.	DRAIN	2.	CATHODE	2.	ANODE
3.	SOURCE	3.	ANODE	3.	CATHODE
4.	DRAIN	4.	CATHODE	4.	ANODE
STYLE 9:		STYLE 10:		STYLE 11:	
PIN 1.	GATE	PIN 1.	GATE	PIN 1.	DRAIN
2.	COLLECTOR	2.	SOURCE	2.	SOURCE
3.	EMITTER	3.	DRAIN	3.	GATE
4.	COLLECTOR	4.	SOURCE	4.	SOURCE
	PIN 1. 2. 3. 4. STYLE 5: PIN 1. 2. 3. 4. STYLE 9: PIN 1. 2. 3. 4. STYLE 9: 2. 3.	PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 9: PIN 1. GATE 2. COLLECTOR 3. EMITTER	PIN 1. BASE PIN 1. 2. COLLECTOR 2. 3. EMITTER 3. 4. COLLECTOR 4. STYLE 5: STYLE 6: PIN 1. GATE PIN 1. 2. DRAIN 2. 3. SOURCE 3. 4. DRAIN 4. STYLE 9: STYLE 10: PIN 1. GATE PIN 1. 2. COLLECTOR 2. 3. EMITTER 3.	PIN 1. BASE	PIN 1. BASE PIN 1. BASE PIN 1. 2. COLLECTOR 2. EMITTER 2. 3. EMITTER 3. COLLECTOR 3. 4. COLLECTOR 4. EMITTER 4. STYLE 5: STYLE 6: STYLE 7: STYLE 7: PIN 1. GATE PIN 1. ANODE PIN 1. 2. DRAIN 2. CATHODE 2. 3. SOURCE 3. ANODE 3. 4. DRAIN 4. CATHODE 4. STYLE 9: STYLE 10: STYLE 11: PIN 1. GATE PIN 1. 2. COLLECTOR 2. SOURCE 2. 3. EMITTER 3. DRAIN 3.

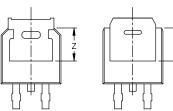
2. 3.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE

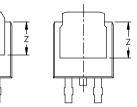

DOCUMENT NUMBER:	98AON23085D	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220, SINGLE GAUGE		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DPAK (SINGLE GAUGE) CASE 369C ISSUE G

DATE 31 MAY 2023

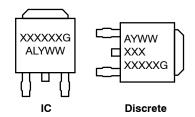

- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z. L3, AND Z.


 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 DETININAL MOLD ESCALUPE.

- OPTIONAL MOLD FEATURE.

DIM	INCHES		MILLIMETERS	
	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
ø	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
Ū	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
e	0.090 BSC		2.29 BSC	
Η	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90 REF	
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

TOP VIEW


BOTTOM VIEW

2.58

BOTTOM VIEW ALTERNATE

5.80 CONSTRUCTIONS [0.228] 6.20 -L2 GAUGE PLANE [0.244] С Δ1 3.00 [0.102] DETAIL A [0.118] ROTATED 90° CW 1.60 [0.063] 6.17

GENERIC MARKING DIAGRAM*

XXXXXX	= Device Code
Α	= Assembly Location
L	= Wafer Lot
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

[0.243] RECOMMENDED MOUNTING FOOTPRINT*

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. COLLECTOR	2. DRAIN	2. CATHODE	2. ANODE	2. ANODE
3. EMITTER	3. SOURCE	3. ANODE	3. GATE	3. CATHODE
4. COLLECTOR	4. DRAIN	4. CATHODE	4. ANODE	4. ANODE

STYLE 7: PIN 1. GATE 2. COLLECTOR STYLE 6: STYLE 8: STYLE 9: STYLE 10: PIN 1. CATHODE 2. ANODE 3. CATHODE PIN 1. MT1 2. MT2 PIN 1. N/C 2. CATHODE 3. ANODE PIN 1. ANODE 2. CATHODE 3 FMITTER 3 RESISTOR ADJUST 3 GATE 4. COLLECTOR 4. CATHODE 4. ANODE CATHODE

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales