IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss.

Features

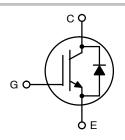
- Low Saturation Voltage using Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- 5 µs Short–Circuit Capability
- These are Pb-Free Devices

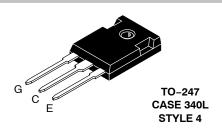
Typical Applications

- Solar Inverters
- Uninterruptible Power Supplies (UPS)

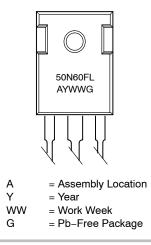
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	600	V
Collector current @ Tc = 25°C @ Tc = 100°C	Ic	100 50	A
Diode Forward Current @ Tc = 25°C @ Tc = 100°C	I _F	100 50	A
Diode Pulsed Current T _{PULSE} Limited by T _J Max	I _{FM}	200	A
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{СМ}	200	A
Short–circuit withstand time V_{GE} = 15 V, V_{CE} = 300 V, $T_J \le +150^{\circ}C$	t _{SC}	5	μs
Gate-emitter voltage	V_{GE}	±20	V
Transient gate-emitter voltage (T _{PULSE} = 5 μs, D < 0.10)		±30	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	223 89	W
Operating junction temperature range	TJ	-55 to +150	°C
Storage temperature range	T _{stg}	–55 to +150	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



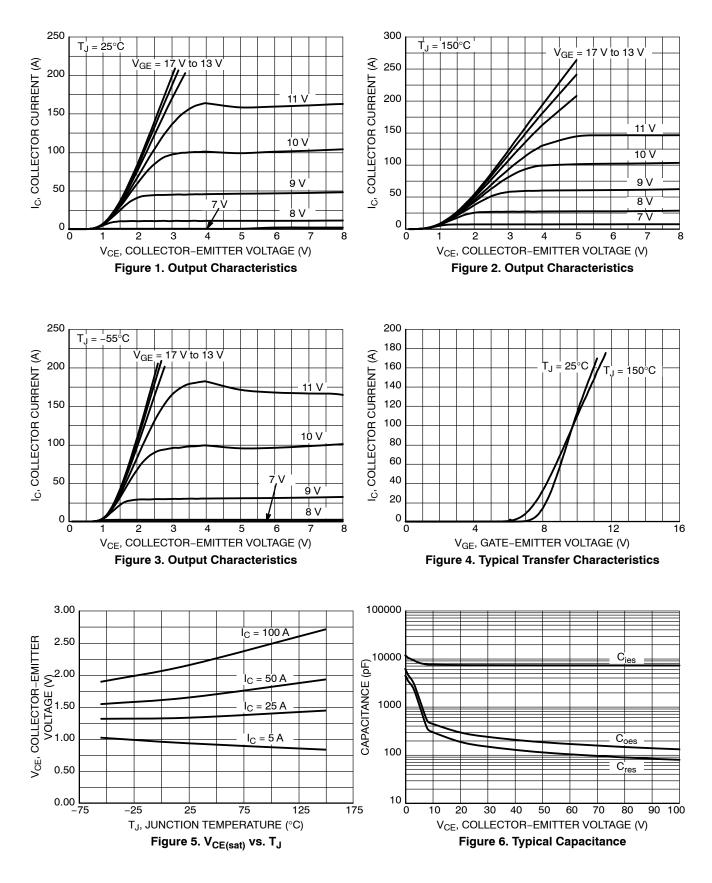
ON Semiconductor®

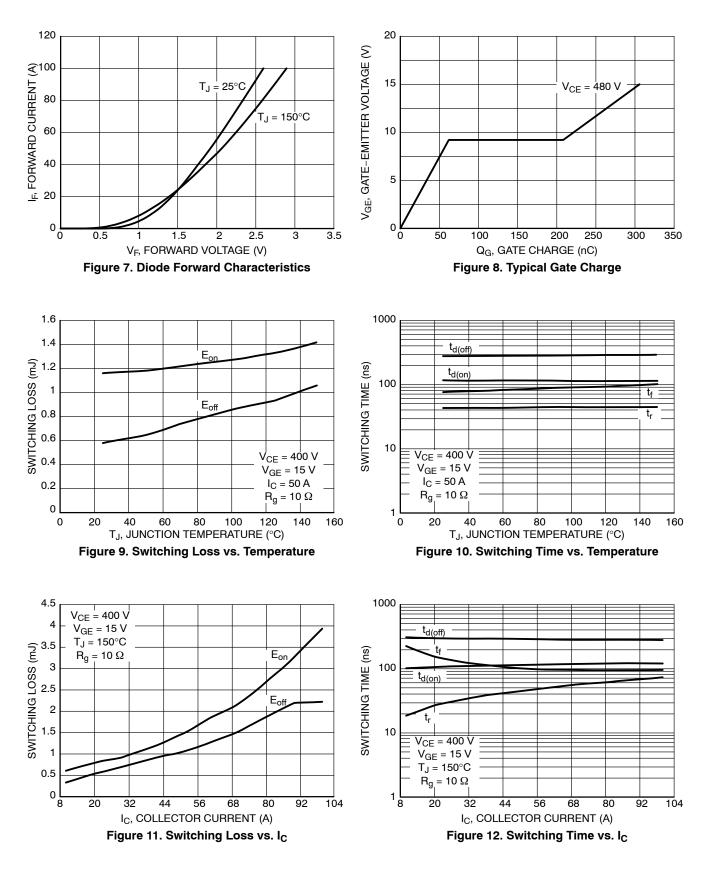

http://onsemi.com

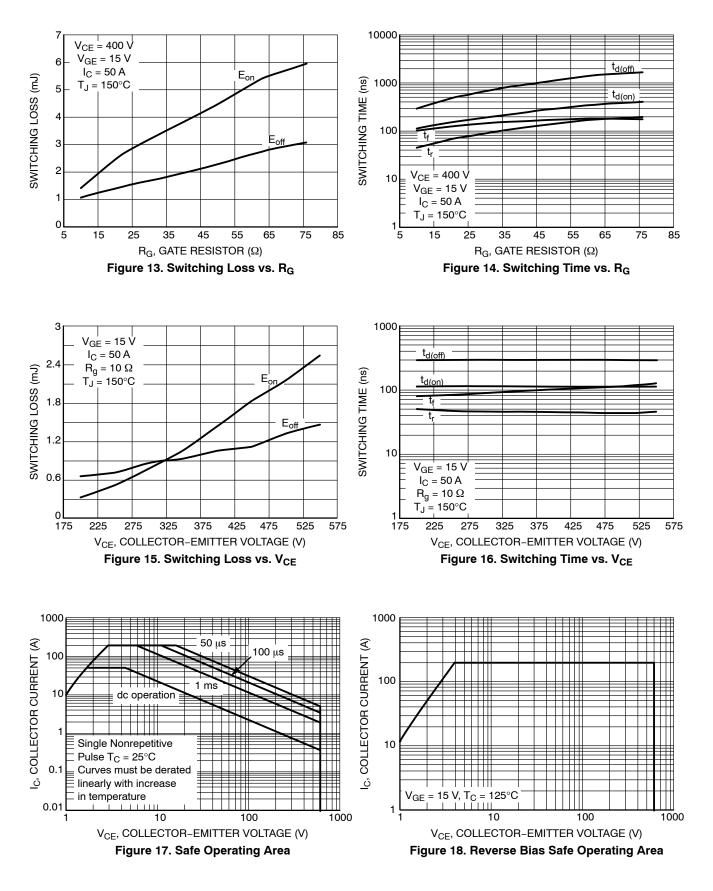
50 A, 600 V V_{CEsat} = 1.65 V E_{OFF} = 0.6 mJ

MARKING DIAGRAM

ORDERING INFORMATION


Device	Package	Shipping
NGTB50N60FLWG	TO-247 (Pb-Free)	30 Units / Rail


THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ ext{ heta}JC}$	0.56	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ ext{ heta}JC}$	0.74	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC	•					
Collector-emitter breakdown voltage, gate-emitter short-circuited	V_{GE} = 0 V, I _C = 500 μ A	V _{(BR)CES}	600	-	_	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 50 A V_{GE} = 15 V, I _C = 50 A, T _J = 150°C	V _{CEsat}	1.40 -	1.65 1.85	1.90 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 350 \ \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$V_{GE} = 0 V, V_{CE} = 600 V$ $V_{GE} = 0 V, V_{CE} = 600 V, T_{J} = 150^{\circ}C$	I _{CES}	_	_	0.5 2	mA
Gate leakage current, collector-emitter short-circuited	V_{GE} = 20 V , V_{CE} = 0 V	I _{GES}	-	_	200	nA
DYNAMIC CHARACTERISTIC						
Input capacitance		Cies	-	7500	-	pF
Output capacitance	V_{CE} = 20 V, V_{GE} = 0 V, f = 1 MHz	C _{oes}	-	300	-	
Reverse transfer capacitance	1	C _{res}	-	190	-	
Gate charge total		Qg	-	310	-	nC
Gate to emitter charge	V_{CE} = 480 V, I _C = 50 A, V _{GE} = 15 V	Q _{ge}	-	60	-	
Gate to collector charge	1	Q _{gc}	-	150	-	
SWITCHING CHARACTERISTIC, INDUCT	TIVE LOAD					
Turn-on delay time		t _{d(on)}	-	116	-	ns
Rise time	1	t _r	-	43	-	
Turn-off delay time	$T_J = 25^{\circ}C$	t _{d(off)}	-	292	-	
Fall time	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 50 \text{ A}$ $B_{c} = 10 \Omega$	t _f	-	78	-	
Turn-on switching loss	$R_g = 10 \Omega$ V _{GE} = 0 V/ 15 V	E _{on}	-	1.1	-	mJ
Turn-off switching loss	1	E _{off}	-	0.6	-	
Total switching loss]	E _{ts}	-	1.7	-	
Turn-on delay time		t _{d(on)}	-	110	-	ns
Rise time		t _r	-	45	-	
Turn-off delay time	$T_{J} = 150^{\circ}C$	t _{d(off)}	-	300	-	
Fall time	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 50 \text{ A}$ $R_{a} = 10 \Omega$	t _f	-	105	-	
Turn–on switching loss	$R_g = 10 Ω$ V _{GE} = 0 V/ 15 V	E _{on}	-	1.4	-	mJ
Turn-off switching loss		E _{off}	-	1.1	-	
Total switching loss		E _{ts}	-	2.5	-	
DIODE CHARACTERISTIC						
Forward voltage	V_{GE} = 0 V, I _F = 50 A V_{GE} = 0 V, I _F = 50 A, T _J = 150°C	V _F	1.55 -	1.85 1.85	2.1	V
Reverse recovery time	T.I = 25°C	t _{rr}	_	85	-	ns
Reverse recovery charge	I _F = 50 Å, V _R = 200 V	Q _{rr}	_	0.40	-	μC
Reverse recovery current	di _F /dt = 200 A/µs	I _{rrm}	_	8	_	Α

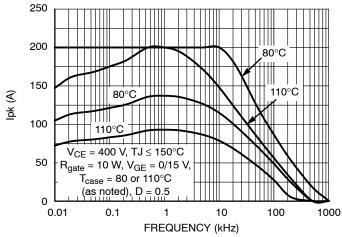


Figure 19. Collector Current vs. Switching Frequency

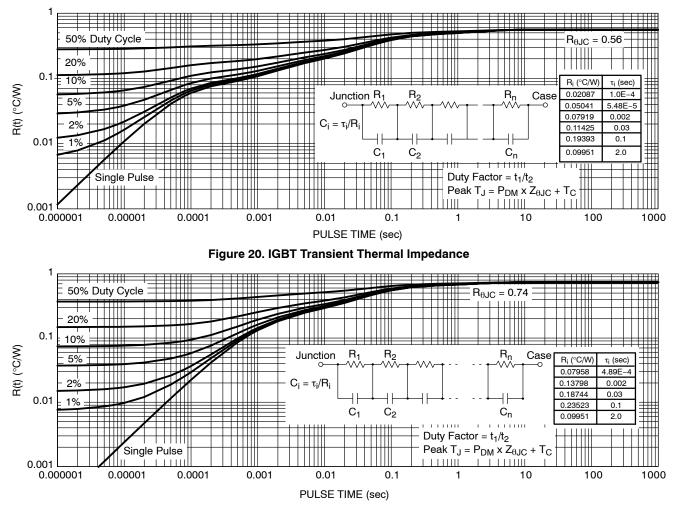
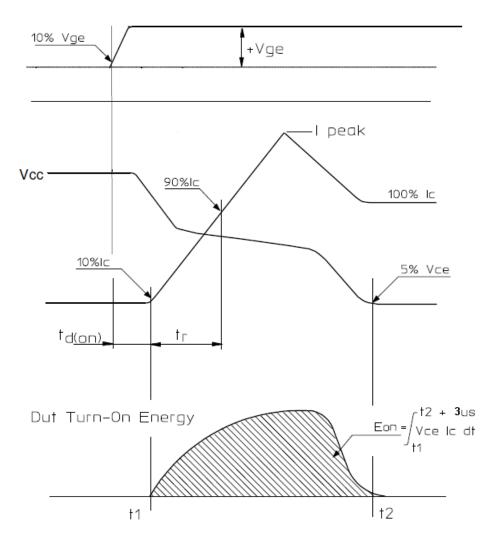
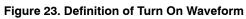




Figure 21. Diode Transient Thermal Impedance

Figure 22. Test Circuit for Switching Characteristics

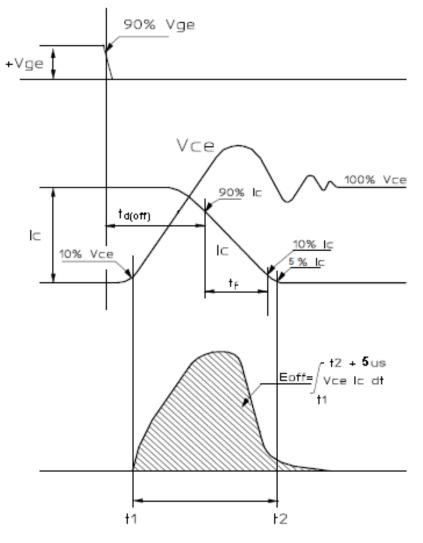
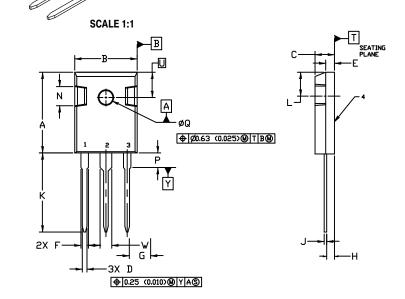


Figure 24. Definition of Turn Off Waveform

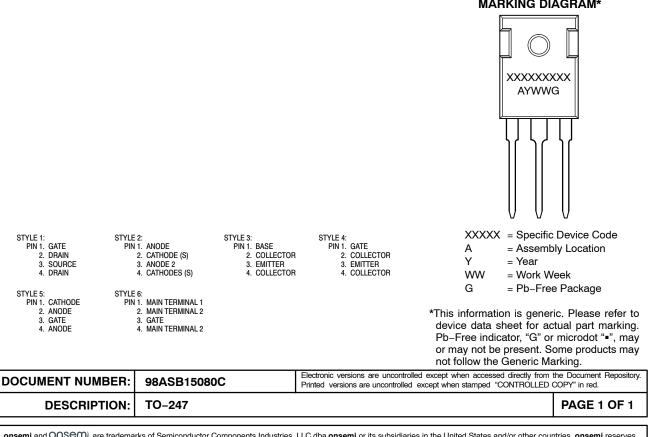
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS


Onsemi

TO-247 CASE 340L ISSUE G

DATE 06 OCT 2021



- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INCHES	
DIM	MIN.	MAX.	MIN.	MAX.
Α	20.32	21.08	0.800	0.830
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45 BSC		0.215 BSC	
Н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
к	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Р		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15 BSC		0.242 BSC	
V	2.87	3.12	0.113	0.123

GENERIC **MARKING DIAGRAM***

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales