

Surface Mount Ceramic Capacitor Products

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KYOCERA AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and KYOCERA AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KYOCERA AVX with reference to the use of KYOCERA AVX's products is given without regard, and KYOCERA AVX assumes no obligation or liability for the advice given or results obtained.

Although KYOCERA AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, KYOCERA AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that KYOCERA AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does KYOCERA AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product–related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KYDCEERA AWXXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Surface Mount Ceramic Capacitor Products

Table of Contents

How to Order Part Number Explanation......1

COG (NP0) Dielectric

General Specifications	. 3
Specifications and Test Methods	. 4
Capacitance Range	

U Dielectric

RF/Microwave C0G (NP0) Capacitors (RoHS)
RF/Microwave C0G (NP0) Capacitors (Sn/Pb)
RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)
AEC Q200 Qualified Ultra Low ESR13
Designer Kits 15

X8R/X8L Dielectric

General Specifications	. 16
Specifications and Test Methods	. 18

X7R Dielectric

General Specifications 19	
Specifications and Test Methods 20	
Capacitance Range	

X7S Dielectric

General Specifications	23
Specifications and Test Methods	24
Capacitance Range	

X5R Dielectric

General Specifications	26
Specifications and Test Methods	27
Capacitance Range	28

Y5V Dielectric

General Specifications	. 30
Specifications and Test Methods	. 31
Capacitance Range	. 32

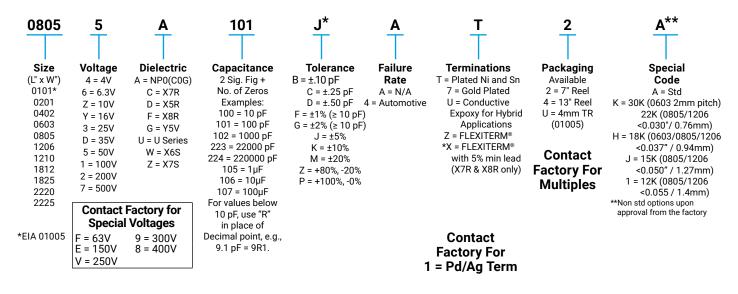
MLCC Gold Termination - AU Series

General Specifications 33	3
Capacitance Range	1

MLCC Tin/Lead Termination "B" (LD Series)

C0G (NP0) -	- General Specifications	40
	Specifications and Test Methods	41
	Capacitance Range	42
X8R	General Specifications	44
	Specifications and Test Methods	45
	Capacitance Range	46
X7R	General Specifications	
	Specifications and Test Methods	
	Capacitance Range	49
X5R	General Specifications	
	Specifications and Test Methods	
	Capacitance Range	

Automotive MLCC General Specifications 54 Capacitance Range 56
APS for COTS+ High Reliability Applications 59 General Specifications 59 Capacitance Range 60
MLCC with FLEXITERM® General Specifications Specifications and Test Methods 64 Capacitance Range 66
FLEXISAFE MLC Chips General Specifications and Capacitance Range
Capacitor ArrayCapacitor Array (IPC)69Automotive Capacitor Array (IPC)73Part & Pad Layout Dimensions74
Low Inductance Capacitors 75 Introduction 75 LICC® (Low Inductance Chip Capacitors)Capacitors) 77 LICC® (Low Inductance Chip Capacitors)Capacitors) 78 IDC (InterDigitated Capacitors) 81 LGA Low Inductance Capacitors 85
High Temperature MLCCs AT Series – 200°C & 250°C Rated
High Voltage MLC ChipsFor 600V to 5000V Applications94Tin/Lead Termination "B" - 600V to 5000V Applications99FLEXITERM® - 600V to 5000V Applications101For 600V to 3000V Automotive Applications - AEC-Q200106
MIL-PRF-55681/Chips 108 CDR01 thru CDR06


MLCC Medical Applications MM Series
Packaging of Chip Components 119
Embossed Carrier Configuration 120
Paper Carrier Configuration
Basic Capacitor Formulas122
General Description

KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

How to Order Part Number Explanation

Commercial Surface Mount Chips EXAMPLE: 08055A101JAT2A

* B, C & D tolerance for \leq 10 pF values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

High Voltage MLC Chips EXAMPLE: 1808AA271KAT2A

1808	<u>A</u>	<u>A</u>	271	ĸ	<u>A</u>	Ţ	2	A
Style 0805 1206 1210 1808 1812 1825 2220 2225 3640	Voltage C = 600V/630V A = 1000V S = 1500V G = 2000V W = 2500V H = 3000V J = 4000V K = 5000V	Coefficient A = COG (* C = X7R Ex 1, 22,	Capacitance Code 2 significant digits + no. of zeros) amples: 10 pF = 100 100 pF = 101 000 pF = 102 000 pF = 223 000 pF = 224 1 μF = 105	Capacitance Tolerance COG: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Failure Rate A=Not Applicable	Termination 1 = Pd/Ag T = Plated Ni and Sn B = 5% Min Pb Z = FLEXITERM® *X = FLEXITERM® with 5% min lead (X7R only)	Packaging/ Marking 2 = 7" Reel 4 = 13" Reel	Special Code A = Standard

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

For RoHS compliant products, please select correct termination style.

KYDECERA AWAT The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

How to Order Part Number Explanation

EXAMPLE: W2A43C103MAT2A

2

Case

Size

1 = 0405

2 = 0508

3 = 0612

Low Inductance Capacitors (LICC®) EXAMPLE: 0612ZD105MAT2A

0612

Size

0306

0508

0612

*LD16

*LD17

*LD18

W

Style

W = ŘoHS

Interdigitated Capacitors (IDC)

EXAMPLE: W3L16D225MAT3A

3

Case

Size

L = SnPb 2 = 0508 ESL = 50pH

Α

Array

Ζ

Voltage

6 = 6.3V

Z = 10V

Y = 16V

3 = 25V

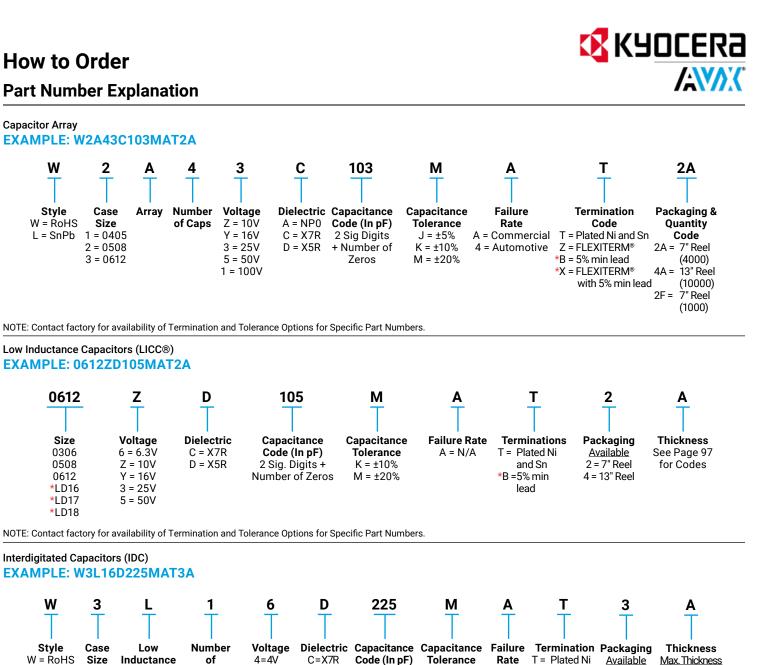
5 = 50V

L

Low

Inductance

Δ


Capacitor Array

W

Style

W = ŘoHS

L = SnPb

Tolerance

M=±20

A=N/A

and Sn

lead

*R =5% min Available

1=7" Reel

3=13" Reel

Max. Thickness

mm (in.)

A=0.95 (0.037)

S=0.55 (0.022)

3 = 0612 ESL = 60pH 1 = 8 Terminals Z=10V Numberof Y=16V Zeros

6=6.3V

C=X7R

D=X5R

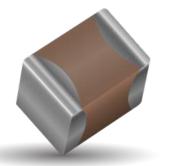
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

of

Terminals

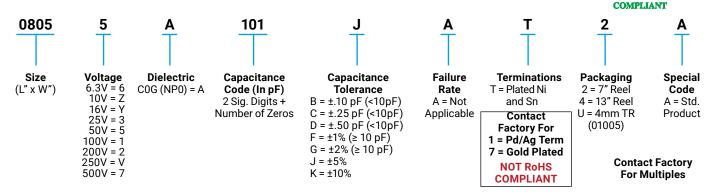
Low Inductance Decoupling Capacitor Arrays (LICA) EXAMPLE: LICA3T183M3FC4AA

L	ICA	3	т	102	Μ	3	F		С	4	Α	Α
			Distantia	0	•		-	-				
2	Style			Cap/Section			Termination		eel Packaging	# of	Inspection	Code
	&	5V = 9	D = X5R	(EIA Code)	Tolerance	Code	*F = C4 Solder		7" Reel	Caps/Part		Face
:	Size	10V = Z	T = T55T	102 = 1000 pF	M = ±20%	6 = 0.500mm	Balls-97Pb/3Sn	R=	13" Reel	1 = one	A = Standard	A = Bar
		25V = 3	S = High K	103 = 10 nF	P = GMV	3 = 0.650mm	H = C4Solder	6=	2"x2" Waffle Pack	2 = two	B = Established	B = No Bar
			T55T	104 = 100 nF		1 = 0.875mm	Balls-Low ESR	8=	2"x2" Black Waffle	4 = four	Reliability	C = Dot, S55S
	*			_		5 = 1.100mm	P = Cr-Cu-Au		Pack		Testing	Dielectrics
	" No	ot RoHS	Compliant	t		7 = 1.600mm	N = Cr-Ni-Au	7=	2"x2" Waffle Pack		Ū	D = Triangle
							X = None		w/termination			
									facingup			
								A=	2"x2" Black Waffle			
		1							Pack			. .
									w/termination		NOTE: Contact	
									facing up		availability of Te	
		KO	HS					с-	4"x4" Waffle Pack		Tolerance Optio	ons for Specific
		COMP	LIANT					0-	w/clearlid		Part Numbers.	

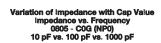

2 Sig. Digits +

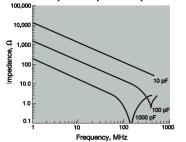
KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

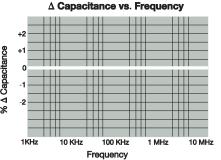
COG (NP0) Dielectric **General Specifications**

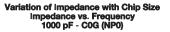

RoHS

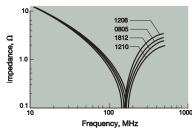

C0G (NP0) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern C0G (NP0) formulations contain neodymium, samarium and other rare earth oxides.

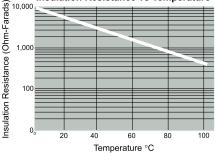

COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 ±30ppm/°C which is less than ±0.3% C from -55°C to +125°C. Capacitance drift or hysteresis for C0G (NP0) ceramics is negligible at less than ±0.05% versus up to ±2% for films. Typical capacitance change with life is less than ±0.1% for COG (NP0), one-fifth that shown by most other dielectrics. COG (NP0) formulations show no aging characteristics.

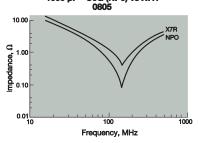

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)




NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.







Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - COG (NP0) vs X7R

🛿 KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

COG (NP0) Dielectric

Specifications and Test Methods

Parame	ter/Test	NP0 Specification Limits	Measuring Co	nditions		
Operating Tem		-55°C to +125°C	Temperature Cyc			
Capac (itance 2	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% f 1.0 kHz ± 10% for c Voltage: 1.0Vri	ap > 1000 pF		
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rated vo @ room temp/	oltage for 60 ± 5 secs humidity		
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% of seconds, w/charge and disc to 50 mA (i Note: Charge device with 1 for 500V de	charge current limited max) 50% of rated voltage		
	Appearance	No defects				
Resistance to	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Deflection: Test Time: 30			
Flexure	Q	Meets Initial Values (As Above)	V			
Stresses	Insulation Resistance	≥ Initial Value x 0.3	90 mm			
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder 0.5 secor			
	Appearance	No defects, <25% leaching of either end terminal				
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater	Dip device in eutectic s	older at 260°C for		
Resistance to	Q	Meets Initial Values (As Above)	60sec- onds. Store at room tempera for 24 ± 2hours before measuring el			
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	for 24 ± 2hours before properties.	measuring electrical		
	Dielectric Strength	Meets Initial Values (As Above)				
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes		
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes		
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes		
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes		
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles an 24 hours at room			
	Appearance	No visual defects				
	Capacitance Variation	\leq ±3.0% or ± .3 pF, whichever is greater	Charge device with twice			
Load Life	Q (C=Nominal Cap)	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	chamber set at 1 for 1000 hours Remove from test chaml	(+48, -0).		
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperature before meas	for 24 hours		
	Dielectric Strength	Meets Initial Values (As Above)				
	Appearance	No visual defects				
	Capacitance Variation	\leq ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber set			
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF:	5% relative humidity (+48, -0) with rated v	oltage applied.		
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber ar temperature for 24 ± 2 hou			
	Dielectric Strength	Meets Initial Values (As Above)				

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

COG (NP0) Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		0101*	02	201		0402				0603						0805						1206			
Soldering		Reflow Only		w Only		low/Wa				eflow/W						ow/Wave						Reflow/W			
Packagin	-	All Paper		aper ± 0.03		Il Pape				All Pape						/Emboss	ed					per/Emb			_
(L) Length	mm (in.)	0.40 ± 0.02 (0.016 ± 0.0008)	(0.024 :	± 0.001)	(0.0	00 ± 0. 40 ± 0.0	004)		(0.	.60 ± 0. 063 ± 0.	006)				(0.07	01 ± 0.20 79 ± 0.00	8)				(0	3.20 ± 0. .126 ± 0.	.008)		
W) Width	mm (in.)	0.20 ± 0.02 (0.008 ± 0.0008)		± 0.03 ± 0.001)		50 ± 0.1 20 ± 0.0).81 ± 0. 032 ± 0.						25 ± 0.20 19 ± 0.00	8)					1.60 ± 0. .063 ± 0.			
() -	mm	0.10 ± 0.04		± 0.001)	<u> </u>	25 ± 0.1).35 ± 0.						50 ± 0.25	0)					0.50 ± 0.			
(t) Terminal	(in.)	(0.004 ± 0.0016)		± 0.002)		10 ± 0.0				014 ± 0.						20 ± 0.01	0)					.020 ± 0.			
	WVDC	16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	16	25	50	100	200	250	500
Cap (pF)	0.5 1.0	В	A A	A	C C	C C	C C	G G	G G	G G	G		J	J J	J	J	J	J	J	J	J	J	J	J J	J
(pr)	1.0	B	A	A	c	c	c	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	1.5	В	А	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	1.8	В	A	A	C	C	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	2.2 2.7	B	A	A	C C	C C	C C	G	G G	G	G		J	J J	J	J	J	J	J	J	J	J	J	J	J
	3.3	B	A	A	C	C	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	3.9	В	A	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	4.7 5.6	B B	A	A	C C	C C	C C	G	G	G	G		J J	J J	J	J	J	J	J	J	J	J	J	J J	J
	6.8	B	A	A	c	c	c	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	8.2	В	A	A	С	С	С	G	G	G	G		J	J	Ĵ	J	J	J	J	J	J	J	J	Ĵ	J
	10	B	A	A	C	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	12 15	B B	A A	A	C C	C C	C C	G G	G	G G	G G	G G	J	J J	J	J	J	J	J	J	J	J	J	J J	J
	18	B	A	A	C	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	22	В	A	A	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	27 33	B B	A A	A	C C	C C	C C	G G	G G	G G	G	G G	J J	J J	J J	J J	J	J	J	J	J	J	J	J J	
	39	B	A	A	c	c	c	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	47	В	А	A	С	С	с	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	56	В	A	A	C	С	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	68 82	B	A A	A	C C	C C	C C	G	G	G	G G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	100	B	A	A	C	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	120				С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	150 180				C C	C C	C C	G	G	G G	G	G G	J J	J J	J	J	J	J	J	J	J	J	J	J J	
	220				c	c	c	G	G	G	G	G	J	J	J	J	N	N	J	J	J	J	J	J	J
	270				С	С	С	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	330 390				C	C	C	G	G	G	G		J	J	J	J	N N	N	J	J	J	J	J	J	J
	390 470				C C	C C	C C	G G	G	G G	G G		J	J	J	J	N	N N	J	J	J	J	J	J	J
	560			1	C	C	C	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	680				C	С	C	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	750 820				C C	C C	C C	G G	G G	G G	G		J	J	J	J	N N	N N	J	J	J	J	J	J	J
	1000				C	C	C	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	1200							G	G	G			J	J	J	J	Р	Р	J	J	J	J	J	J	J
	1500 1800				$\left - \right $			G	G G	G G			J	J J	J	J	P P	P P	J	J	J	M P	Q Q	P P	P
	2200							G	G	G			J P	P	J P	P	P	P	J	J	M	P	Q	P	P
	2700							G	G	G			Р	Р	Р	Р	Р	P	J	J	м	Р	Q	P	P
	3300				1			G	G	G			Р	Р	P	P	P	P	J	J	M	P	Q	X	P
	3900 4700							G	G	G G			P P	P P	P P	P P	P P	P P	J	J	M	P P	X X	X X	X X
	5600			1									P	P	P				J	J	M	Р	X	X	X
	6800												Р	Р	Р				м	М	м	Р	X	х	Х
Can	8200			+	$\left \right $								P	P	P P				P P	P	P	P P	X X	X	
Cap (µF)	0.010 0.012												P	P	P				X	X	X	X		х	
Ľ.	0.015			6			I												х	Х	X	х			
	0.018	-1-	~	~	-W	~													X	X	X	X			
	0.022 0.027	× L	<		7	1-													X X	X X	X X	X			
	0.033	- (`	5)	L	1						1							X	X	X	х			
	0.039	5				2	5												x	X	X				
	0.047	<u> </u>	Ĭ.	-															X X	X X	X X				
	0.088		1	t I															^						
	0.1																		Х	Х	Х				
WVDC SIZE		16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	16	25	50	100	200	250	500
SIZE		0101*	02	201		0402				0603				_		0805						1206			

Letter	Α	В	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.05 5)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
			PA	PER						EMB	OSSED			

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

TDS-SMDMLCC-0010 | Rev 1

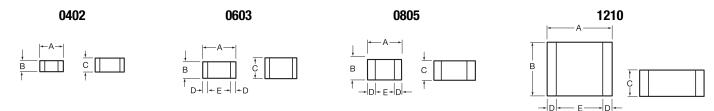
COG (NPO) Dielectric Capacitance Range

PREFERRED SIZES ARE SHADED

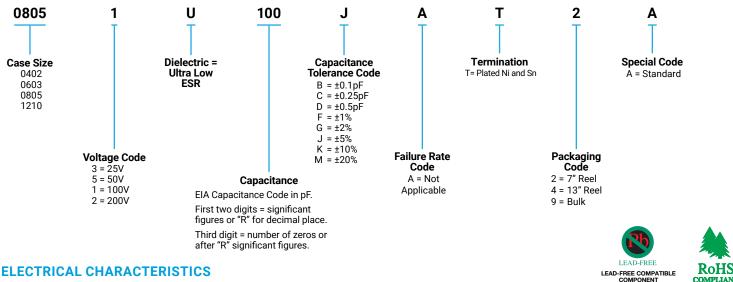
			ARE S																	
SIZE				1210					1812				1825			2220			2225	
Soldering	-			Reflow Only					Reflow Only				Reflow Onl			Reflow Onl			eflow Only	
Packagin	g mm		Ра	per/Embos 3.20 ± 0.20					4.50 ± 0.30				4.50 ± 0.30			II Embosse 5.70 ± 0.40			Embosse	
(L) Length	(in.)		(0	0.126 ± 0.00)8)			(0	.177 ± 0.01	2)		(0	0.177 ± 0.01	12)	(0	.225 ± 0.01	6)	(0.	225 ± 0.01	0)
W) Width	mm (in.)		(0	2.50 ± 0.20 0.098 ± 0.00					3.20 ± 0.20 .126 ± 0.00				6.40 ± 0.40 0.252 ± 0.01			5.00 ± 0.40			5.35 ± 0.25 250 ± 0.01	
(t) Terminal	mm			0.50 ± 0.25					0.61 ± 0.36				0.61 ± 0.36			0.64 ± 0.39			0.64 ± 0.39	
	(in.) WVDC	25	50	0.020 ± 0.01 100	200	500	25	(0 50	.024 ± 0.01 100	4) 200	500	50	0.024 ± 0.01 100	200	50	.025 ± 0.01 100	5) 200	(0. 50	025 ± 0.01 100	200
Сар	3.9	20	00	100	200	000	20	00	100	200	000	00	100	200	00	100	200	00	100	200
(pF)	4.7																			
	5.6																			
	6.8 8.2																			
	10	М	М	М	М	М	Р	Р	Р	Р	Р						T	\sim	A/	1
	12	М	м	м	м	м	Р	Р	Р	Р	Р					-	1		52	
	15 18	M	M	M M	M	M	P P	P P	P P	P P	P P					- () 1T-	──
	22	M	M	M	M	M	P	P	P	P P	P					5	1	1	1	
	27	М	м	м	м	м	Р	Р	Р	Р	Р					L	ler		-	
	33	м	м	М	M	м	Р	Р	P	P	P						[−] t	k.		
	39 47	M P	M P	M P	M P	M	P P	P P	P P	P P	P P									
	56	P	P	P	P	P	P	P	P	P	P									1
	68	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	82	P	P	P	P	P	P	P	P	P	P									<u> </u>
	100 120	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	150	P	P	P	P	P	P	P	P	P	P									
	180	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	220 270	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	330	P	P	P	P	P	P	P	P	P	P									<u> </u>
	390	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	470	P	P	P	P	P	P	P	P	P	P									
	560 680	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	820	P	P	P	P	P	P	P	P	P	P									
	1000	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	м	М	М				М	М	Р
	1200 1500	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	M M	M	M				M	M M	P P
	1800	<u>Р</u>	P	P	P	P P	P P	P P	P	P	P	M	M	M				M	M	P P
	2200	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	x	x	м				М	м	Р
	2700	P	P	P	P	P	P	P	P	P	Q	X	X	м				M	M	P
	3300 3900	P P	P P	P P	P P	P P	P P	P P	P P	P P	Q Q	X X	X X	X X			X X	M M	M M	P P
	4700	P	P	P	P	P	P	P	P	P	Y	x	x	x	Х	x	x	M	M	P
	5600	Р	Р	Р	Р	Р	Р	Р	Р	Р	Y	Х	Х	Х	Х	X	Х	М	М	Р
	6800 8200	P P	P P	P P	X X	X X	P P	P P	Q	Q Q	Y Y	X X	X X	X X	X X	X X	X X	M M	M M	P P
Сар	0.010	Р Р	P P	X P	X	X	P P	P P	Q	Q	Y Y	X	X	X	X	X	X	M	M	P
(μF)	0.012	X	x	x	x	x	Р	Р	Q	x	Y	X	x	x	X	x	x	М	м	P
	0.015	X	X	X	Z	Z	P	P	Q	X	Y	X	X	X	X	X	X	M	м	Y
	0.018 0.022	X X	X X	Z Z	Z Z		P P	P P	X X	X X	Y	X X	X X	X X	X X	X X	Х	M M	M Y	Y Y
	0.022	x	Z	Z	Z		Q	x	x	z		x	x	Y	x	x		P	Y	Y
	0.033	Х	Z	Z	Z		Q	х	Х	Z		Х	х		Х	X		Х	Y	Y
	0.039 0.047	Z Z	Z Z	Z Z			X X	X X	Z Z	Z Z		X X			Y Y			X X	Y	Y
	0.047	2	L	2			Z	Z	Z	2		X			Y Z			<u>х</u> Х	Z Z	<u> </u>
	0.082						z	z	Z						Z			х	Z	
	0.1	05	50	100		500	Z	Z	Z		500	50	100		Z	100		Z	Z	000
	WVDC SIZE	25	50	100 1210	200	500	25	50	100 1812	200	500	50	100 1825	200	50	100 2220	200	50	100 2225	200
	3122			1210					1012				1025		1	2220			2225	

Letter	А	В	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
		· · · · · · · · · · · · · · · · · · ·	PAF	PER						EMBO	SSED			

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


U Dielectric RF/Microwave COG (NP0) Capacitors (RoHS) Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	А	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010 ± 0.005 (0.25 ± 0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020 ± 0.010 (0.51 ± 0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025 ± 0.015 (0.635 ± 0.381)	0.040 (1.02) min

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11} \Omega$ min. @ 125° C and rated WVDC

Working Voltage (WVDC):

- Size Working Voltage
- 0402 50, 25 WVDC
- 0603 _ 200, 100, 50 WVDC
- 0805 _ 200, 100 WVDC
- 1210 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

- 0402 See Performance Curve, page 300
- 0603 See Performance Curve, page 300
- 0805 See Performance Curve, page 300
- 1210 See Performance Curve, page 300

Marking

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

MILITARY SPECIFICATIONS

Meets or exceeds the requirements of MIL-C-55681

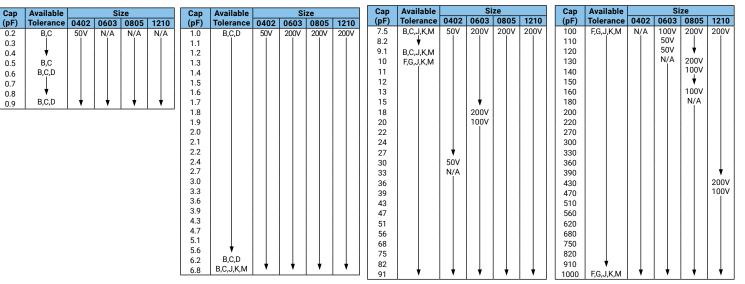
KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAC

COMPLIANT

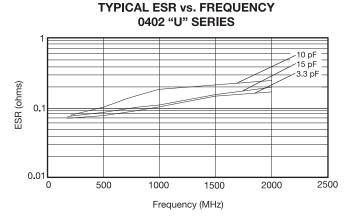
U Dielectric **RF/Microwave C0G (NP0) Capacitors (RoHS)** Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

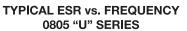
CAPACITANCE RANGE

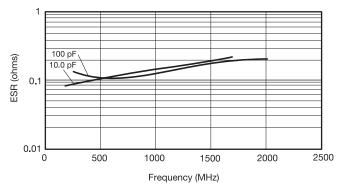
Cap


0.2

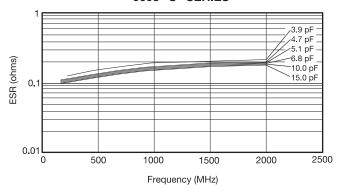
0.3

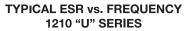

0.4

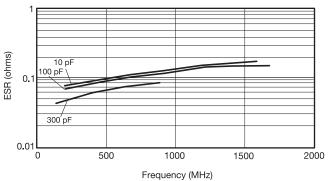

0.7


0.8 0.9

ULTRA LOW ESR, "U" SERIES

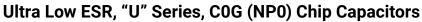


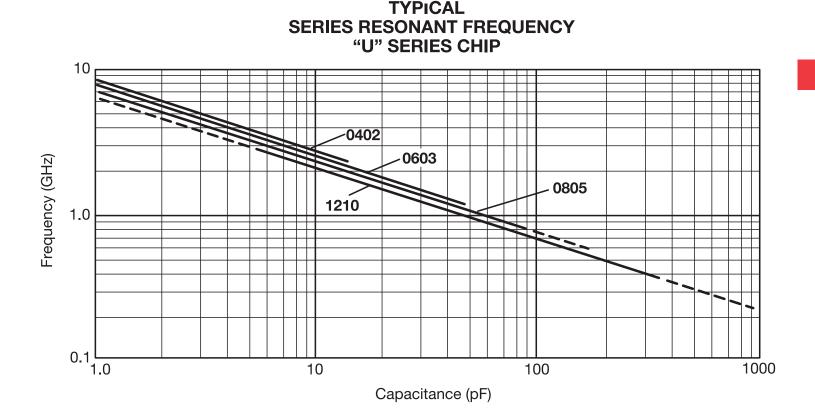




TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

🔇 KYOCERA

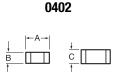


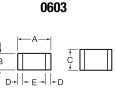

ESR Measured on the Boonton 34A

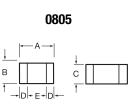
KUDEER8 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

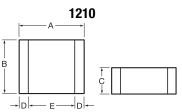
U Dielectric RF/Microwave C0G (NP0) Capacitors

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

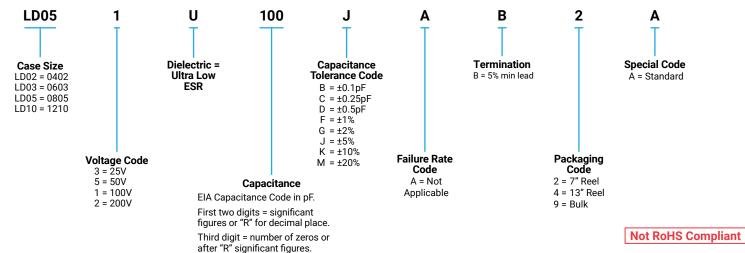

U Dielectric RF/Microwave COG (NP0) Capacitors (Sn/Pb) Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors




GENERAL INFORMATION


"U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)



Size	Α	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010±0.005 (0.25±0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020±0.010 (0.51±0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025±0.015 (0.635±0.381)	0.040 (1.02) min

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size	Working Voltage
------	-----------------

- 0402 50, 25 WVDC
- 0603 200, 100, 50 WVDC
- 0805 200, 100 WVDC
- 1210 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

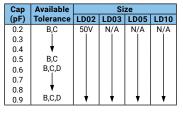
Equivalent Series Resistance Typical (ESR):

040 - See Performance Curve, page 306 0603 - See Performance Curve, page 306 0805 - See Performance Curve, page 306 1210 - See Performance Curve, page 306

Marking:

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

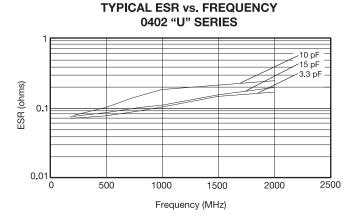
Military Specifications

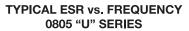

Meets or exceeds the requirements of MIL-C-55681

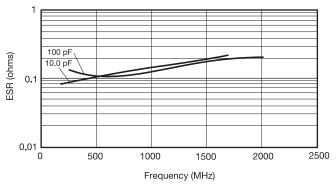
KINCLERANCE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

U Dielectric RF/Microwave COG (NP0) Capacitors (Sn/Pb) Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

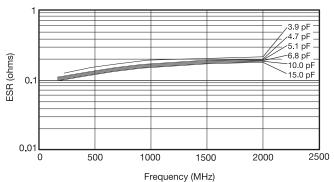
CAPACITANCE RANGE

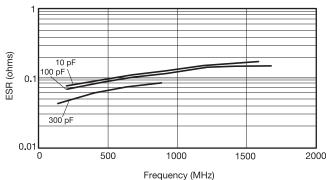



Сар	Available			ze	
(pF)	Tolerance	LD02	LD03	LD05	LD10
1.0	B,C,D	50V	200V	200V	200V
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
2.0					
2.1					
2.2					
2.4					
2.7					
3.0					
3.3					
3.6					
3.9					
4.3					
4.7					
5.1					
5.6					
6.2	B,C,D	↓	↓	↓	+
6.8	B,C,J,K,M	L '	_ '	L '	

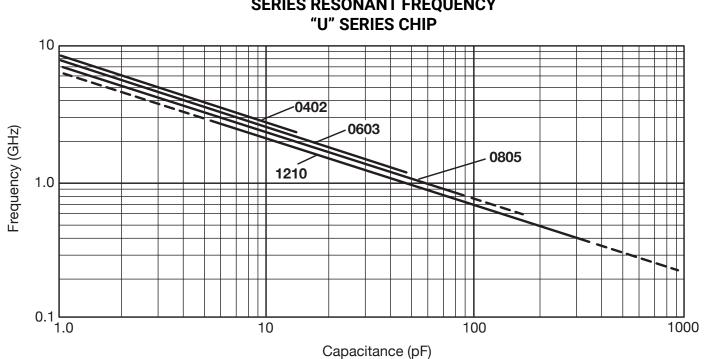

Сар	Available		Si	ze		Cap	Availa
(pF)	Tolerance	LD02	LD03	LD05	LD10	(pF)	Tolera
7.5	B,C,J,K,M	50V	200V	200V	200V	100	F,G,J,H
8.2	+					110	
9.1	B,C,J,K,M					120	
10	F,G,J,K,M					130	
11						140	
12						150	
13						160	
15			*			180	
18			200V			200	
20			100V			220	
22						270	
24						300	
27		*				330	
30		50V				360	
33		N/A				390	
36						430	
39						470	
43						510	
47						560	
51						620	
56						680	
68						750	
75						820	
82						910	*
91		•			•	1000	F,G,J,ł

	Сар	Available		Si	ze	
D		Tolerance	LD02	LD03		LD10
	(pF)					
/	100	F,G,J,K,M	N/A	100V 50V	200V	200V
	110			50V		
	120			N/A		
	130				200V	
	140				100V	
	150				V	
	160				100V	
	180				N/A	
	200					
	220					
	270					
	300					
	330					
	360					
	390					*
	430					200V
	470					100V
	510					
	560					
	620					
	680					
	750					
	820					
	910	↓				
	1000	F,G,J,K,M	¥	🕴	+	+


ULTRA LOW ESR, "U" SERIES



TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES


TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

ESR Measured on the Boonton 34A

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

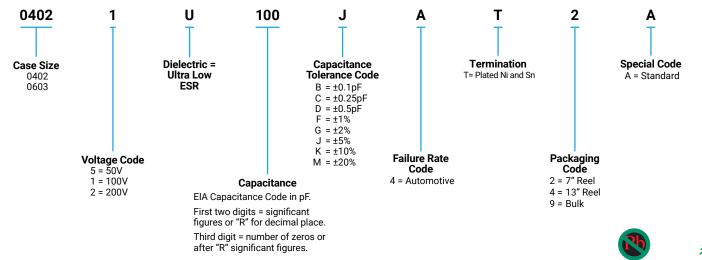
RF/Microwave Capacitors RF/Microwave C0G (NP0) Capacitors Ultra Low ESR "U" Series, COG (NP0) Capacitors (Sn/Pb)

TYPICAL SERIES RESONANT FREQUENCY

U Dielectric 💽 KYOCERa **RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)** AEC Q200 Qualified Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

GENERAL INFORMATION

Automotive "U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the automotive market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402 and 0603.


DIMENSIONS: inches (millimeters)

0402 0603

inches (mm										
Size	Α	В	С	D	E					
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 max (0.6)	N/A	N/A					
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 max (0.91)	0.010±0.005 (0.25±0.13)	0.030 min (0.76)					

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Size 0402 - 0.2 pF to 22 pF @ 1 MHz
Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12} \Omega$ min. @ 25°C and rated WVDC $10^{11} \Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage

- 0402 100, 50, 25 WVDC
- 0603 200, 100, 50 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

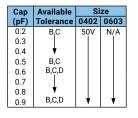
- 0402 See Performance Curve, page 303
- 0603 See Performance Curve, page 303

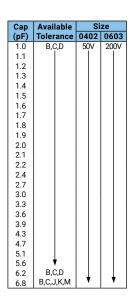
Automotive Specifications

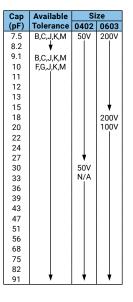
Meets or exceeds the requirements of AEC Q200

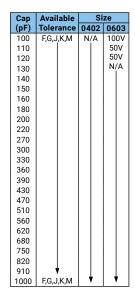
13

LEAD-FREE

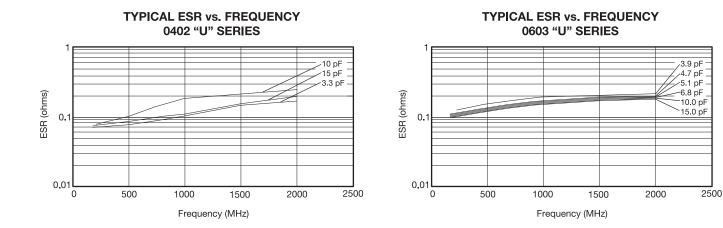

LEAD-FREE COMPATIBLE COMPONENT

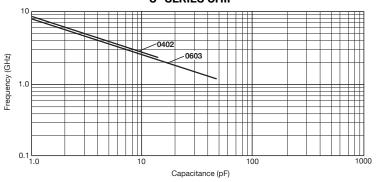

RoHS


COMPLIANT


U Dielectric 🔇 КУОСЕRа **RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)** AEC Q200 Qualified, Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

CAPACITANCE RANGE





XXX

ULTRA LOW ESR, "U" SERIES

TYPICAL SERIES RESONANT FREQUENCY **"U" SERIES CHIP**

KUDEER8 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

U Dielectric Designer Kits Communication Kits "U" Series

0402											
	Kit 5000 UZ										
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance								
0.5		4.7									
1.0		5.6	B (± 0.1pF)								
1.5		6.8	в (± 0. трг)								
1.8	B (±0.1pF)	8.2									
2.2	ы (±0.трг)	10.0									
2.4		12.0	J (±5%)								
3.0		15.0] 5(±5%)								
3.6											

***25 each of 15 values

0603

	Kit 4000 UZ										
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance								
1.0		6.8									
1.2		7.5	B (±0.1pF)								
1.5		8.2									
1.8		10.0									
2.0		12.0									
2.4	B (±0.1pF)	15.0									
2.7	в (±0.трг)	18.0									
3.0		22.0	J (±5%)								
3.3		27.0									
3.9		33.0									
4.7		39.0									
5.6		47.0									

***25 each of 24 values

1210										
	Kit 35	500 UZ								
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance							
2.2		36.0								
2.7		39.0								
4.7	B (±0.1pF)	47.0								
5.1		51.0								
6.8		56.0								
8.2		68.0								
9.1		82.0								
10.0		100.0	J (±5%)							
13.0		120.0								
15.0		130.0								
18.0	J (± 5 %)	240.0								
20.0	J (± 5 %)	300.0								
24.0		390.0								
27.0		470.0								
30.0		680.0								

***25 each of 30 values

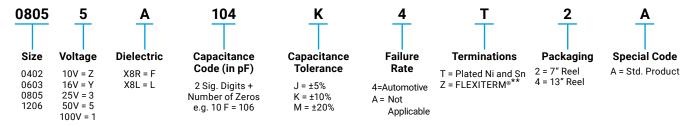
0805

	Kit 3000 UZ										
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance								
1.0		15.0									
1.5		18.0									
2.2		22.0									
2.4		24.0									
2.7		27.0									
3.0	B (±0.1pF)	33.0									
3.3	в (±0.трг)	36.0	J (±5%)								
3.9		39.0	J (±5%)								
4.7		47.0									
5.6		56.0									
7.5		68.0									
8.2		82.0									
10.0	J (±5 %)	100.0									
12.0	J (13 %)	130.0									

***25 each of 30 values

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X8R/X8L Dielectric General Specifications


KYOCERA AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150°C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of \pm 15% between -55°C and +150°C. The X8L material has capacitance variation of \pm 15% between -55°C to 125°C to 125°C and +15/40% from +125°C to +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

	Style		0603		0805 1206				06
S	oldering	Ref	flow/W	ave	Ret	Reflow/Wave Reflow/			/Wave
	WVDC	25V	50V	100V	25V	50V	100V	25V	50V
221	220				J	J	J		
271	270	G	G		J	J	J		
331	pF 330	G	G		J	J	J		
471	470	G	G	G	J	J	J		
681	680	G	G	G	J	J	J		
102	1000	G	G	G	J	J	J	J	J
152	1500	G	G	G	J	J	J	J	J
222	2200	G	G	G	J	J	J	J	J
332	3300	G	G	G	J	J	J	J	J
472	4700	G	G	G	J	J	J	J	J
682	6800	G	G	G	J	J	J	J	J
103	uF 0.01	G	G	G	J	J	J	J	J
153	0.015	G	G		J	J	N	J	J
223	0.022	G	G		J	J	N	J	J
333	0.033	G	G		J	J		J	J
473	0.047	G	G		J	J		J	J
683	0.068	G			N	N		М	М
104	0.1				N	N		М	М
154	0.15				N	N		М	М
224	0.22				N			М	М
334	0.33							М	М
474	0.47							М	Q
684	0.68							Q	Q
105	uF 1							Q	Q
	WVDC	25V	50V	100V	25V	50V	100V	25V	50V
	Style		0603			0805		12	06

Size		0603	0805	1206	1210
Soldering		Reflow/Wave	Reflow/Wave	Reflow/Wave	Reflow/Wave
Packaging		All Paper	Paper/Embossed	Paper/Embossed	Paper/Embossed
(L) Length (in		1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.30 ± 0.4
		(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.130 ± 0.016)
(W) Width	mm	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20
	(in)	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)
(t) Terminal	mm	0.35 ± 0.15	0.50 ± 0.25	0.50 ± 0.25	0.50 ± 0.25
	(in)	(0.014 ± 0.006)	(0.020 ± 0.010)	(0.020 ± 0.010)	(0.020 ± 0.010)

	X8L														
	Size 0603			0805			1206				1210				
S	Solderii	ng	Ref	flow/Wa	ave	Ref	low/W	ave	Reflow/Wave			Reflow/Wave			
		WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
271	Сар	270	G	G											
331	(pF)	330	G	G	G	J	J	J							
471		470	G	G	G	J	J	J							
681		680	G	G	G	J	J	J							
102		1000	G	G	G	J	J	J		J	J				
152		1500	G	G	G	J	J	J		J	J	J			
182		1800	G	G	G	J	J	J		J	J	J			
222		2200	G	G	G	J	J	J		J	J	J			
272		2700	G	G	G	J	J	J		J	J	J			
332 392		3300 3900	G G	G G	G G	J J	J J	J J		J J	J J	J			
472		4700	G	G	G	J	J	J		J	J	J			
562		5600	G	G	G	J	J	J		J	J	J			
682		6800	G	G	G	J	J	J		J	J	J			
822		8200	G	G	G	J	J	J		J	J	J			
103	Сар	0.01	G	G	G	J	J	J		J	J	J			
123	(µF)	0.012	G	G		J	J	J		J	J	J			
153	(Pr /	0.015	G	G		J	Ĵ	Ĵ		J	J	J			
183		0.018	G	G		J	J	J		J	J	J			
223		0.022	G	G		J	J	J		J	J	J			
273		0.027	G	G		J	J	J		J	J	J			
333		0.033	G	G		J	J	N		J	J	J			
393		0.039	G	G		J	J	N		J	J	J			
473		0.047	G	G		J	J	N		J	J	J			
563		0.056	G	G		J	J	N		J	J	J			
683		0.068	G	G		J	J	N		J	J	J			
823		0.082	G	G		J	J	N		J	J	J			
104		0.1	G	G		J	J	N		J	J	M			
124		0.12				J	N			J	J	M			
154		0.15				J	N		J	J	J	Q			
184 224		0.18				N	N		J	J	J	Q			┝───┤
274		0.22				N N	N		J	J	J	Q			┝───┤
334		0.27				N			J	M	M	Q			
334 394		0.33				N			M	M	N P	Q Q	<u> </u>		
474		0.39				N			M	M	P	0			
684		0.47				N			M	M	P	Q			
824		0.82				N			M	M	P	0			
105		1				N			M	M	P	Q			
155		1.5							M	M	-	Y			
225		2.2							M	M				Z	Z
475														Z	-
106				İ									Z		
		WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
	SIZE			0603			0805			12	06			1210	

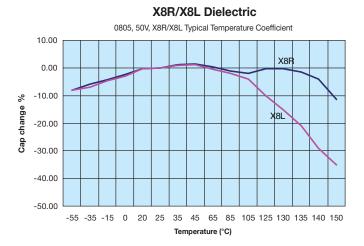
Letter	Α	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (-0.013)	0.56 (-0.022)	0.71 (-0.028)	0.9 (-0.035)	0.94 (-0.037)	1.02 (-0.04)	1.27 (-0.05)	1.4 (-0.055)	1.52 (-0.06)	1.78 (-0.07)	2.29 (-0.09)	2.54 (-0.1)	2.79 (-0.11)
			PAPER						EMBO	SSED			

KUDECERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X8R/X8L Dielectric General Specifications

APPLICATIONS FOR X8R AND X8L CAPACITORS

- All market sectors with a 150°C requirement
- Automotive on engine applications
- Oil exploration applications
- Hybrid automotive applications
 - Battery control
 - Inverter / converter circuits
 - Motor control applications
- Water pump
- Hybrid commercial applications
- Emergency circuits
- Sensors
- Temperature regulation


🔇 KYOCERA

ADVANTAGES OF X8R AND X8L MLC CAPACI-TORS

- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- · Low ESR / ESL compared to other technologies
- Tin solder finish
- FLEXITERM® available
- · Epoxy termination for hybrid available
- 100V range available

ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- Samples
- Technical Articles
- Application Engineering
- Application Support

KYDCERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

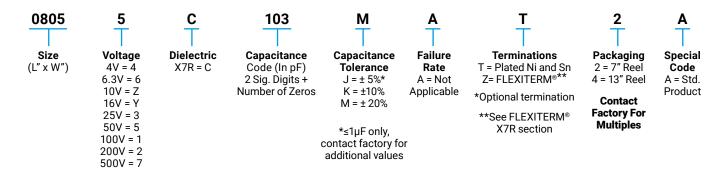
X8R/X8L Dielectric

Specifications and Test Methods

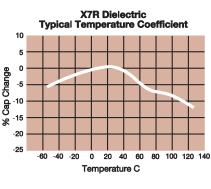
Parame	re es Dissipation Factor Insulation Resistance Solderability Appearance Capacitance Variation Factor Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor	X8R/X8L Specification Limits	Measuring	Conditions
Operating Tem		-55°C to +150°C	Temperature C	ycle Chamber
Сарас		Within specified tolerance	Freg.: 1.0 k	·Hz + 10%
Dissipati	on Factor	\leq 2.5% for \geq 50V DC rating \leq 3.5% for 25V DC and 16V DC rating	Voltage: 1.0	
Insulation	emperature Range pacitance ation Factor on Resistance tric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance derability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Pactor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated @ room tem	
Dielectric		No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) n 150% of rated voltage
		No defects	Deflectio	n: 2mm
Resistance to		≤ ±12%	Test Time: 3	
Flexure Stresses		Meets Initial Values (As Above)		
		≥ Initial Value x 0.3	90 1	mm
Solder	Factor Insulation Resistance derability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Dielectric Strength Appearance Capacitance	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo 0.5 sec	
		No defects, <25% leaching of either end terminal		
		≤ ±7.5%		
Resistance to Solder Heat		Meets Initial Values (As Above)	Dip device in eutection 60 seconds. Store at 24 ± 2 hours before r	room temperature for
		Meets Initial Values (As Above)	properties.	
	Resistance rability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
		≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock		Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
		Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	••	No visual defects	-	
		≤ ±12.5%	Charge device with 1.5 test chamber set	
Load Life		≤ Initial Value x 2.0 (See Above)	for 1000 hou	
		≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
		Meets Initial Values (As Above)		
		No visual defects	4	
	tric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance derability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Dielectric Strength Appearance Capacitance Variation Dissipation Factor Dissipation Factor Dissipation Factor	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity		≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
Tanhaty		≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and humidity	for 24 ± 2 hours before
		Meets Initial Values (As Above)	measu	y

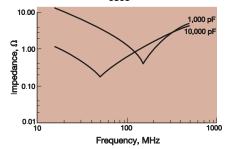
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

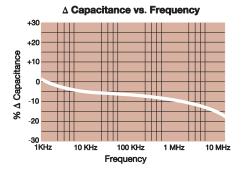
X7R Dielectric General Specifications

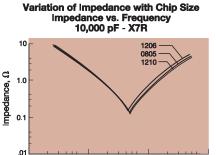

X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from -55°C to +125°C. This capacitance change is non-linear.

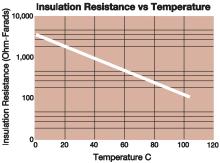
Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.

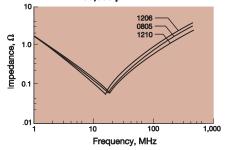

X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)




NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.




10

100

1,000

Variation of Impedance with Chip Size Impedance vs. Frequency 100.000 pF - X7R

KYOCERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Frequency, MHz

X7R Dielectric

Paramete	r/Test	X7R Specification Limits	M	leasuring Conditions
Operating Tempe		-55°C to +125°C	Tem	perature Cycle Chamber
-		Within specified tolerance ≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating Contact Factory for DF by PN	Vo	Freq.: 1.0 kHz ± 10% bltage: 1.0Vrms ± .2V p > 10μF, 0.5Vrm @ 120Hz
Insulation R	Capacitance Signation Factor alation Resistance electric Strength ance to ure ses Appearance Capacitance Variation Factor Insulation Resistance Solderability Appearance Capacitance Variation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dissipation Factor Insulation Resistance Dissipation Factor Insulation Resistance	10,000MΩ or 500MΩ - μF, whichever is less		levice with rated voltage for secs @ room temp/humidity
Dielectric S	Strength	No breakdown or visual defects	charge and disch	50% of rated voltage for 1-5 seconds, w/ arge current limited to 50 mA (max) th 150% of rated voltage for 500V devices.
	sipation Factor ation Resistance ation Resistance Appearance Capacitance Variation Factor Insulation Resistance Solderability Ce to Insulation Resistance Solderability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance	No defects		
Resistance to		≤ ±12%		Deflection: 2mm
Flexure Stresses		Meets Initial Values (As Above)	Te Te	est Time: 30 seconds
		≥ Initial Value x 0.3		
Soldera	bility	\ge 95% of each terminal should be covered with fresh solder		in eutectic solder at 230 ± 5°C or 5.0 ± 0.5 seconds
		No defects, <25% leaching of either end terminal		
		≤ ±7.5%		
Resistance to Solder Heat		Meets Initial Values (As Above)		solder at 260°C for 60 seconds. Store at 24 ± 2hours before measuring electrical
Soluel Heat	Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Diselectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Diselectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Diselectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Diselectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Diselectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Diselectric Strength Appearance Capacitance Variation Dissipation Factor	Meets Initial Values (As Above)		properties.
	ectric Strength Appearance Capacitance Variation Ees Appearance Capacitance Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
		≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock		Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
		Meets Initial Values (As Above)		and measure after 24 ± 2 hours at room temperature
		No visual defects		nounting, perform heat treatment 150+0/-
	Variation	≤ ±12.5%		stabilise for 24+/-2 hour at room temp, then measure.
	Factor	≤ Initial Value x 2.0 (See Above)		≥ rated voltage in test chamber set at 2°C for 1000 hours (+48, -0).
Load Life		≥ Initial Value x 0.3 (See Above)		remove from test chamber, perform heat
		Meets Initial Values (As Above)	treatment 150+0/-100 at roo	of for 2 hour, then stabilise for 24+/-2 hour of temp, then measure.
	Appearance	No visual defects	Pre-treatment: After m	nounting, perform heat treatment 150+0/-
	ance to xure sses Capacitance Variation Dissipation Factor Insulation Resistance Solderability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor Dissipation Factor	≤ ±12.5%	10C for 2 hour, then	stabilise for 24+/-2 hour at room temp, then measure.
Load Humidity		≤ Initial Value x 2.0 (See Above)		per set at 85°C \pm 2°C/ 85% \pm 5% relative
Humany		≥ Initial Value x 0.3 (See Above)	-	ours (+48, -0) with rated voltage applied. remove from test chamber, perform heat
		Meets Initial Values (As Above)	treatment 150+0/-100	C for 2 hour, then stabilise for 24+/-2 hour om temp, then measure.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

PREFERRED SIZES ARE SHADED

SIZE		0101*			0201			1		0.4	02						06	02				1			08	OF				<u> </u>				1206				
Soldering	a	Reflow Only			flow C					teflow							eflow									/Wav								0w/W	_			_
	-	Paper/										/e				R			/e																			
Packagin	ig 🛛	Embossed		A	ll Pap	er				All F	aper						All P	aper						Pap	per/Ei	mbos	sed					I	Paper	/Emb	osse	b		
(L) Length	mm (in.)	0.40 ± 0.02 (0.016 ± 0.0008)			50 ± 0 24 ± 0					1.00 .040							1.60 ±									± 0.20 ± 0.00								0 ± 0 6 ± 0	.30 .012)			
W) Width	mm	0.20 ± 0.02		0.3	30 ± 0	.03				0.50	± 0.10)					0.81 ±	± 0.15	5						1.25 :	± 0.20)						1.6	0 ± 0	.30			
vv) vidin	(in.)	(0.008 ± 0.0008)			1 ± 0					.020							.032 ±									± 0.00		_						3 ± 0				
(t) Terminal	mm	0.10± 0.04			5 ± 0					0.25							0.35 ±									± 0.25								0 ± 0				
140/00	(in.)	(0.004 ± 0.0016)	6.0	10)6 ± 0 16		1 50	6.0	<u>`</u>	.010		<u> </u>	100	6.0	10	<u>`</u>	.014 ±		<u> </u>	200	1050	6.0	10	<u>``</u>		± 0.01	<u> </u>	000	050	6.0	10	10	25	0 ± 0 50		000	250	500
WVDC Cap 100	101	16 B	6.3 A	A	A	25 A	50 A	6.3 C	10 C	C	25 C	50 C	100 C	6.3 G	10 G	16 G	25 G	50 G	G	_200	250 J	6.3	10	10	25	50	100	200	250	0.3	10	16	25	50 G	G	200 N	250 N	500 N
(pF) 150		B	A	A	A	A	A	C	C	C	C	C	C	G	G	G	G	G	G	J	J									G	G	G	G	G	G	N	N	N
220	221	B	A	A	A	A	A	C	C	C	C	C	C	G	G	G	G	G	G	J	J	E	E	E	E	E	E	E	J	J	J	J	J	J	J	N	N	P
	331	B	A	A	A	A	A	C	C	C	c	C	C	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
470	471	B	A	A	A	A	A	c	C	C	C	c	C	G	G	G	G	G	G	J	Ĵ		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
680	681	B	A	A	A	A	A	c	C	C	c	c	C	G	G	G	G	G	G	J	Ĵ		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
1000	102	B	A	A	A	A	A	C	C	C	C	C	C	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
1500	152		Α	A	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	Ν	Ρ
2200	222		Α	A	A	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	Ν	Р
3300	332		Α	A	Α	A		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	Ν	Ρ
3900	392		Α	Α	Α	Α																																
4700	472		Α	A	A	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	Ν	Ν	Ρ
5600	562		Α	A	A	Α																																
6800	682		A	A	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	Ν	Ν	Р
Cap 0.01	103		A	A	A	A		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	Р	Ρ	J	J	J	J	J	J	Ν	Ν	Р
0 /	123																																					
								С	С	С	С	E		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	Ν	Q
	183						<u> </u>		-			-		-				-											5									
0.022	223 273		A	A	A	<u> </u>		С	С	С	С	E		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	Р	Р	Q
	333							С	С	С	С	E		G	G	G	G	J	J				J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	Q	Q
	393								U.					G	G	G	G	J	J	-			J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	ų	ų
	473							С	С	С	С	E		G	G	G	G	J	J				J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	Q	Q
	683							C	c	C	C	E		G	G	G	G	J	J		1		J	J	J	J	P	P	•	J	J	J	J	J	P	Q	Q	Y
											-	-			-		0														-					-		
	104		A					С	С	С	С	E		G	G	G	G	J	J				J	J	J	J	Р	Р		J	J	J	J	J	Р	Q	Q	
0.12	124						1																															
0.15	154													G	G	G	J	J			1		N	N	Ν	Ν	Р			К	К	К	К	К	Q	Q	Q	
0.22	224							С	С	С	С			G	G	J	J	J			1		N	N	Ν	N	Р			К	К	К	К	К	Q	Q	Q	
0.33	334													J	J	J	J	J					Р	Р	Р	Р	Р			Κ	K	К	К	Ν	Q			
								С	С					J	J	J	J	J					Р	Р	Р	Р	Р			М	М	М	М	Х	Х			
														J	J	J							Р	Р	Ρ					М	М	м	М	Х	Х			
								С						J	J	J	J	К			<u> </u>		Р	Р	Р	Р				М	М	м	М	Х	Х		\square	
														J	J	К					-		P	P	Р	Ρ				М	M	M	Х	X	X	\square		
						<u> </u>	<u> </u>							Κ							<u> </u>		P	P	Ρ					X	X	X	X	Ζ		\vdash		
								<u> </u>														Р	Р	Р						X	X	X	Х			\vdash	μ	
								<u> </u>													<u> </u>									Х	X	<u> </u>				$\left - \right $	\vdash	
47	476 107																																			──┦	\vdash	
WVDC	107	16	6.3	10	16	25	50	62	10	16	25	50	100	63	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	63	10	16	25	50	100	200	250	500
SIZE		0101*	0.3		0201	23	50	0.3	10	04		50	100	0.3		10	25 06		100	200	250	0.3	10	10	25 08		100	200	230	0.3	10	110		1206		200	200	300
3125		0101		_	0201		_		_	- 04	52	_					0	0.5	_		_	I	_		0	00			_		_			1200				

Letter	А	В	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
.			PAF	PER						EMBO	SSED	•		

NOTE: Contact factory for non-specified capacitance values

*EIA 01005

**Contact Factory for Specifications

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

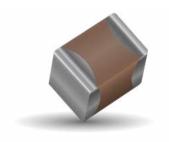
X7R Dielectric Capacitance Range

Capacitance Range

PREFERRED SIZES ARE SHADED

	SIZE					1210						18	12				1825				2220			1	2225	
:	Soldering				R	eflow Or	nly					Reflo	w Only			R	eflow Or	nly		R	eflow Or	nly		R	eflow Or	ıly
F	Packaging				Pap	er/Embo	ssed					All Em	bossed			AI	I Emboss	sed		AI	Embos:	sed		All	Emboss	sed
(L) Ler	ngth	mm (in.)				3.30 ± 0. 130± 0.0		-					± 0.40 ± 0.016)				4.50 ± 0.4 177 ± 0.0				5.70 ± 0.9 224 ± 0.0				5.70 ± 0.4 224 ± 0.0	
W) Wie	dth	mm (in.)				.50 ± 0.3 098 ± 0.0							± 0.40 ± 0.016)				5.40 ± 0.4 252 ± 0.0				5.00 ± 0.4 197 ± 0.0				.30 ± 0.4 248 ± 0.0	
(t) Ter	minal	mm (in.)				.50 ± 0.2 020 ± 0.0							± 0.36 ± 0.014)				0.61 ± 0.3 024 ± 0.0				0.64 ± 0.3 025 ± 0.0				.64 ± 0.3 025 ± 0.0	
	V	VVDC	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
Сар	100	101																						-	- V	
(pF)	150	151																					*	-		X-
	220	221				К	K	К	М														(7		JT.
	330	331				К	K	К	М			N	N	N	N									-	-	0.000
	470	471				К	К	к	М			N	N	N	N								Ļ	1	1	_
	680	681				К	к	К	м			N	N	N	N									0.020	<u> </u>	
	1000	102	K	к	К	К	к	К	М	N	N	N	N	N	N	X	X	Х		Х	X	X	X	Х	X	X
	1500	152	К	К	К	К	К	К	М	N	N	N	N	N	N	Х	X	Х		Х	X	X	Х	Х	X	Х
	2200	222	К	к	К	К	к	К	М	N	N	N	N	N	N	Х	X	Х		Х	X	X	X	Х	X	Х
	3300	332	К	к	К	К	к	К	Р	N	N	N	N	N	N	Х	X	Х		Х	X	X	X	Х	X	Х
	4700	472	К	К	К	К	К	К	Р	N	N	N	N	N	Р	Х	X	Х		Х	X	X	X	Х	Х	Х
	6800	682	К	к	к	К	К	к	Р	N	N	N	N	N	Р	Х	X	х		Х	X	X	X	Х	х	Х
Сар	0.01	103	К	к	K	K	к	К	Р	N	N	N	N	N	Р	X	X	X		Х	X	X	X	Х	X	X
(µF)	0.015	153	К	К	K	K	к	К	Р	N	N	N	N	N	Р	X	X	Х		Х	X	X	X	Х	X	X
	0.022	223	К	к	K	К	К	Р	Q	N	N	N	N	N	Р	Х	X	Х		Х	X	X	X	Х	Х	х
	0.033	333	К	к	K	K	к	Р	X	N	N	N	N	N	Х	X	X	Х		Х	X	X	X	Х	X	Х
	0.047	473	K	K	K	K	K	P	X	N	N	N	N	Р	Х	X	X	X		X	X	X	X	X	X	X
	0.068	683	K	K	K	K	K	P	X	N	N	N	N	P	Х	X	X	Х		Х	X	X	X	X	X	X
	0.1	104	K	K	K	К	K	P	X	N	N	N	P	P	X	X	X	X		X	X	X	X	X	X	X
	0.15	154	K	K	K	M	P	Z	Z	N	N	N	P	Р	Z	X	X	Х		X	X	X	X	X	X	X
	0.22	224	K	K	K	М	P	Z		N	N	N	P	Q	Z	X	X	X		X	X	X	X	X	X	X
	0.33	334	K	K	K	M	Q	Z		N	N	N	P	X	Z	X	X	X		X	X	X	X	X	X	X
	0.47	474	M	M	M	P	Q	Z		N	N	N	Q	X	Z	X	X	X		X	X	X	X	X	X	X
	0.68	684	<u>M</u>	M	P	X	X	Z		Q	Q	Q	Q	Z		X	X	X		X	X	X	Z	X	X	X
	1.0	105	P	P	P	X	Z			Q	Q	Q	X	Z		X	X	X		X	X	X	7	X	X	X
	1.5	155	N	N	Z	Z	Z				Z	Z	Z			X	X	Z		X	X	Z		X	X	Z
	2.2	225	X	X	Z	Z	Z				Z	Z	Z			X	X X	Z		X	X Z	Z		X X	X X	Z
	3.3	335 475	X Z	X Z	Z	Z	Z				Z	Z	Z			X	1			X Z				X		
							2			7			2			X	X				Z				X	
	10 22	106 226	Z	Z	Z	Z				Z	Z	Z				Z	Z		7	Z	Z			Z	Z	
				2	2														Z							┥──┦
	47	476 107	Z																							
	WVDC	107	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
	SIZE		10	16	25	1210	100	200	500	16	25	50	100	200	500	50		200	25	50		200	500	50	100	200
	SIZE					1210						18	812				1825				2220				2225	

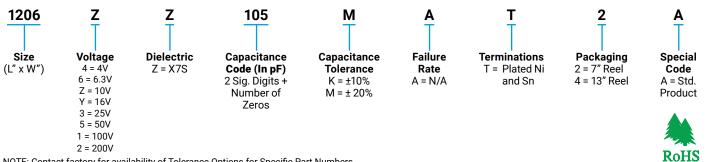
Letter	А	В	С	E	G	J	K	М	N	Р	Q	Х	Y	Z	7
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	3.30
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	(0.130)
			ΡΔΙ	PFR						F	MBOSSE				


NOTE: Contact factory for non-specified capacitance values

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

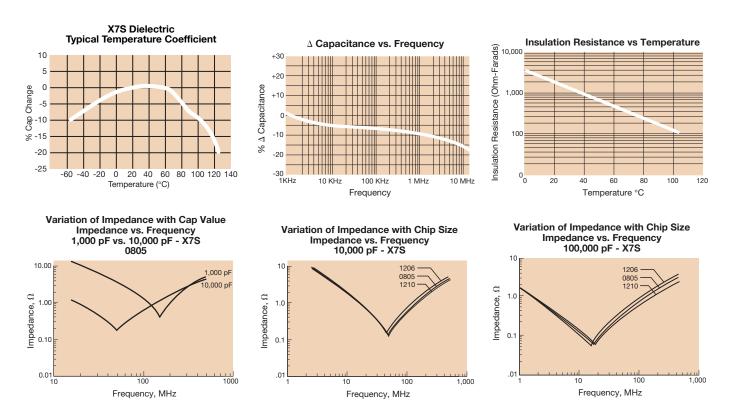
X7S Dielectric General Specifications

COMPLIANT



GENERAL DESCRIPTION

X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. Its temperature variation of capacitances within ±22% from -55°C to +125°C. This capacitance change is non-linear.


Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency. X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

TYPICAL ELECTRICAL CHARACTERISTICS

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

X7S Dielectric Specifications and Test Methods

Parame	ter/Test	X7S Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
	itance on Factor	Within specified tolerance $\leq 5.0\%$ for $\geq 100V$ DC rating $\leq 5.0\%$ for $\geq 25V$ DC rating $\leq 10.0\%$ for $\geq 10V$ DC rating $\leq 10.0\%$ for $\leq 10V$ DC ratingContact Factory for DF by PN	- Freq.: 1.0 k Voltage: 1.0' For Cap > 10 μF, 0.	Vrms ± .2V
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	0 seconds 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 m	
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 ho	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with ratec	
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7S Dielectric Capacitance Range

PREFERRED SIZES ARE SHADED

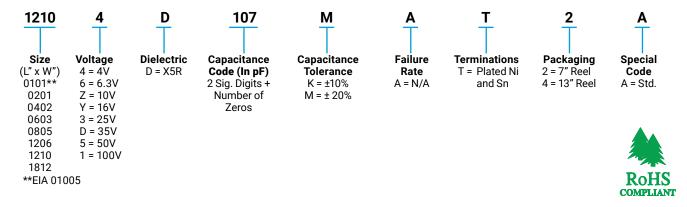
				C D		[
SIZE		0	402	0603	0805		1206		1210
Solder	ing	Reflo	w/Wave	Reflow/Wave	Reflow/Wave	Ret	flow/W	ave	Reflow Only
Packag	jing	All	Paper	All Paper	Paper/Embossed	Pape	r/Embo	ssed	Paper/Embossed
(L) Length	mm		± 0.10	1.60 ± 0.15	2.01 ± 0.20	3.	20 ± 0.1	20	3.20 ± 0.20
(L) Length	(in.)		± 0.004)	(0.063 ± 0.006)	(0.079 ± 0.008)		26 ± 0.		(0.126 ± 0.008)
W) Width	mm		± 0.10	0.81 ± 0.15	1.25 ± 0.20		60 ± 0.:		2.50 ± 0.20
'	(in.)		± 0.004)	(0.032 ± 0.006)	(0.049 ± 0.008)		63 ± 0.		(0.098 ± 0.008)
(t)	mm		± 0.15	0.35 ± 0.15	0.50 ± 0.25		50 ± 0.1		0.50 ± 0.25
Terminal	(in.)		± 0.006)	(0.014 ± 0.006)	(0.020 ± 0.010)		20 ± 0.0		(0.020 ± 0.010)
-	WVDC	4	6.3	6.3	4	10	50	100	6.3
Cap	100								
(pF)	150								
	220 330					}		-	
							-1-	~	WV V
	470 680					~	\langle	-	
	1000					- 1		2)	D
	1500					10	-		
	2200							I.T	
	3300					ł		TI	
	4700						1	÷	I
	6800								
Сар	0.010								
(μF)	0.010								
(µr)	0.013								
	0.022		С						
	0.033		c						
	0.047		c						
	0.068		C C						
	0.10		C						
	0.15								
	0.22			G					
	0.33			G					
	0.47			G					
	1.0	E		G					
	1.5	-			N				
	2.2	E			N			Q	
	3.3	-			N			ч Ч	
	4.7				N	Q			
	10					~			
	22				İ				Z
	47								_
	100								
	WVDC	4	6.3	6.3	4	10	50	100	6.3
	SIZE		402	0603	0805		1206		1210

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

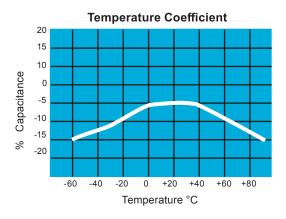
*Contact Factory for Specifications

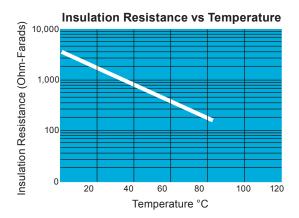
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X5R Dielectric General Specifications



GENERAL DESCRIPTION


- · General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100µF)


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

KYDCERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X5R Dielectric Specifications and Test Methods

Parame	ter/Test	X5R Specification Limits	Measuring C	
		-55°C to +85°C	Temperature Cy	cle Chamber
Сарас	b Solderability Solderability Solderability Appearance Capacitance Variation Factor Insulation Resistance Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Dielectric Strength Appearance Capacitance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance	Within specified tolerance	_	
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 12.5% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 kl Voltage: 1.0\ For Cap > 10 μF, 0.9	/rms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rate secs @ room te	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and di to 50 mA	scharge current limited
	ation Factor ation Factor ation Factor ation Factor an Resistance ation Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance derability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Capacitance Variation Capacitance Variation Appearance Capacitance Variation Capacitance Dielectric Strength Appearance Capacitance Variation Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Capacitance Variation Capacitance Dielectric Strength Appearance Capacitance Variation Capacitance Capacitance Dielectric Strength Appearance Capacitance Variation Capacitance Dielectric Strength Appearance Capacitance Capacitance Capacitance Dielectric Strength Appearance Capacitance Capacitan	No defects	Deflectior	: 2mm
Resistance to	Variation	≤ ±12%	Test Time: 30	
Flexure Stresses		Meets Initial Values (As Above)		
		≥ Initial Value x 0.3	90 m	m
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo ± 0.5 sec	
	Appearance	No defects, <25% leaching of either end terminal		
		≤ ±7.5%		
Resistance to Solder Heat		Meets Initial Values (As Above)	Dip device in eutectic 60seconds. Store at room	n temperature for 24 \pm
		Meets Initial Values (As Above)	2hours before measuring	g electrical properties.
		Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
		≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock		Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
		Meets Initial Values (As Above)	Repeat for 5 cycles and hours at room	
	Appearance	No visual defects	Charge device with 1.5X	rated voltage in test
		≤ ±12.5%	chamber set at 85°C ± (+48,-	2°C for 1000 hours
Load Life		≤ Initial Value x 2.0 (See Above)	Note: Contact factory for part numbers that are t	
		≥ Initial Value x 0.3 (See Above)	volta	
		Meets Initial Values (As Above)	Remove from test chambe temperature for	
	Appearance	No visual defects		
		≤ ±12.5%	Store in a test chamber se 5% relative humidity for 10	
Load Humidity		≤ Initial Value x 2.0 (See Above)	rated voltage	e applied.
ramaty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and	I humidity for
	Dielectric	Meets Initial Values (As Above)	- 24 ± 2 hours befo	ne measuring.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

PREFERRED SIZES ARE SHADED

Case Size		01	01*			0201					04	02						0603							0805			
Soldering		Reflo	w Only		Re	flow O	nlv				Reflow	/Wav	e				Refl	ow/W	feve					Refl	ow/W	feve		
Packaging			nbossed			II Pap					All F	aper					A	II Pap	er					Paper	/Emb	ossed		
(L) Length	mm (in.)		± 0.02 : 0.0008)			50 ± 0. 24 ± 0.						± 0.20 ± 0.00						50 ± 0 53 ± 0)1 ± 0. 79 ± 0.			
W) Width	mm (in.)	0.20 (0.008 ±	± 0.02 : 0.0008)			30 ± 0. 11 ± 0.				(0		± 0.20 ± 0.00						30 ± 0 31 ± 0							25 ± 0. 19 ± 0.			
(t) Terminal	mm (in.)		± 0.04 : 0.0016)			15 ± 0. 06 ± 0.						± 0.10 ± 0.00						35 ± 0 14 ± 0							50 ± 0. 20 ± 0.			
Voltage:		6.3	10	4	6.3		16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF) 100	101		В					Α		1																		
150	151		В					Α																				
220	221		В					Α						С														
330	331		В					Α						C														<u> </u>
470	471		B					A						С														<u> </u>
680	681		B					A						-	C													<u> </u>
1000	102		B				Α	A						C														<u> </u>
1500	152	В	B				A	A						-		1												
2200	222	B	B			A	A	A							C													
3300	332	B	B			A	Â	Â							C													<u> </u>
4700	472	B	B			A	A	A					С	0							G							
6800	682	B	B			A	A	A					C															
Cap (µF) 0.01	103	B	B			A	A	A					C						G	G	G G							
0.015	150		D			A	A	A					C						G	G	G							
0.013	223	B			•	•	•	•				С	C						G	G	G							N
0.022	333	B			A	A	A	A				C				-				G								N
					•														G	-	G							
0.047	473	B			A	A	A	A				C	С						G	G	G							N
0.068	689											С				<u> </u>			G		G							N
0.1	104	В			A	A	A	A			С	С	С	С					G	G	G					N	N	N
0.15	154															ļ			G							N	N	
0.22	224	В		Α	A	A				С	С	С	С	С				G	G							N	N	Ν
0.33	334																	G	G							N		
0.47	474			Α	A				С	C	С	С	С	E				G	J							N	Р	Р
0.68	684																	G								N		
1.0	105			A	A	С	С		С	C	С	С	С		G	G	G	G	J	G	G				N	N	P	Р
1.5	155																											
2.2	225			С	C	C			С	C	C	С	С		G	G	J	J	J	K	K			Ν	N	P	P	P
3.3	335														J	J	J	J					Ν	Ν				
4.7	475			С	C				E	E	E	E			J	J	J	G	K			N	Р	J	N	N	Р	Р
10	106								E	E	E				K	J	K	K	K			Р	Р	Р	Р	Р		
22	226								E	G					K	K	K					Р	P	Р	Р	P		
47	476														K	K						Р	Р	Р				
100	107																											
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size		01	01*			0201					04	02						0603							0805			

Letter	Α	В	С	E	G	J	К	м	N	Р	Q	Х	Y	Z	
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)	
	PAPER						EMBOSSED								

PAPER and EMBOSSED available for 01005

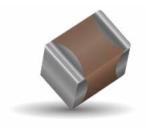
NOTE: Contact factory for non-specified capacitance values *EIA 01005

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

PREFERRED SIZES ARE SHADED

Cas	e Size					1206							1210				1			1812					
	dering				Ref	low/W						Re	Reflow Only					Reflow Only							
	caging				Paper			1		Paper/Embossed							All Embossed								
(L) Leng		mm			3.2	20 ± 0.	.40					3.2	20 ± 0.	40	•		4.50 ± 0.30 (0.177 ± 0.012)								
(-)	,	(in.)				<u>26 ± 0.</u>							<u>26 ± 0.</u>												
W) Wid	th	mm (in.)				50 ± 0. 53 ± 0							50 ± 0. 98 ± 0.							20 ± 0. 26 ± 0.					
() -		mm				50 ± 0							50 ± 0.					0.61 ± 0.36							
(t) Termi	inal	(in.)				20 ± 0							20 ± 0.							24 ± 0.					
Vol	tage:		4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50		
Cap (pF)	100	101																							
	150	151																							
	220	221																							
	330	331																					<u> </u>		
	470	471																					<u> </u>		
	680	681									<u> </u>												<u> </u>		
	1000	102									<u> </u>												<u> </u>		
	1500	152																							
	2200	222																							
	3300	332																							
	4700	472																							
	6800	682				ļ	ļ									ļ				ļ			<u> </u>		
Cap (µF)	0.01	103																					<u> </u>		
	0.015	150																							
	0.022	223																							
	0.033	333																							
	0.047	473																							
	0.068	689																							
	0.1	104																							
	0.15	154							İ											1					
	0.22	224																							
	0.33	334																							
	0.47	474					Q	Q							Х	Х				1			<u> </u>		
	0.68	684					~	~			<u> </u>												<u> </u>		
L	1.0	105					Q	Q	Q					Х	X	Х									
	1.5	155					Y Y	Y	ų v		<u> </u>														
	2.2	225			Q	0	0	0	0					Х	Z	Z									
	3.3	335		Q	Q	ų į	Q	Q	Q					^	2	2									
	<u> </u>	475	Х	X	X	X	X	X	X			Z	Z	Z	Z	Z									
			X X						X		V		Z		Z						7				
	10	106		X	X	X	X	Х	X	-	X	X		Z	2	Z	-	-	-	-	Z				
		226	Х	X	X	X	Х			Z	Z	Z	Z	Z			Z	Z	Z	Z					
	 100	476 107	X X	X X	X	X				Z	Z Z	Z	Z	Z									├──		
Vol	tage:	107	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50		
	e Size		-	0.5	10	1206		35	50	-	0.5	10	1210	25	55	50	-	0.5	10	1812	25	55	00		
UdS	e Size					1200							1210							1012					

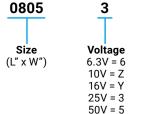
Letter	Α	В	С	Е	G	J	К	М	Ν	Р	Q	X	Y	Z	
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
			PA	PER			EMBOSSED								


PAPER and EMBOSSED available for 01005

NOTE: Contact factory for non-specified capacitance values *EIA 01005

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

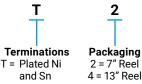
Y5V Dielectric General Specifications


GENERAL DESCRIPTION

Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30°C to +85°C. These characteristics make Y5V ideal for decoupling applications within limited temperature range.

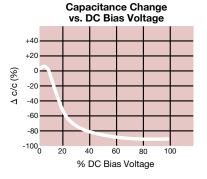
PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

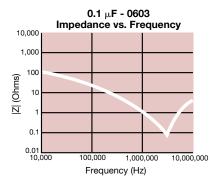
G

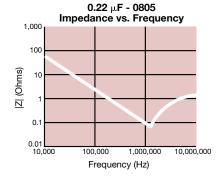


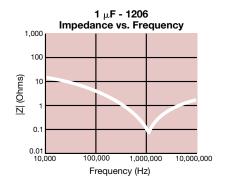
Capacitance Tolerance Z = +80 -20%

Ζ


Α


т




Temperature Coefficient +20 +10 0 % Δ Capacitance -10 -20 -30 -40 -50 -60 -70 -80 -35 +5 +25 +45 +65 +85 +105 +125 -55 -15 Temperature °C

Insulation Resistance vs. Temperature Insulation Resistance (Ohm-Farads) 10,000 1,00 100 0 +50 +20 +30 +40 +60 +70 +80 +90 Temperature °C

KUDEER8 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

Y5V Dielectric Specifications and Test Methods

Parame	ter/Test	Y5V Specification Limits	Measuring	Conditions				
• •	perature Range	-30°C to +85°C	Temperature C	ycle Chamber				
•	itance on Factor	Within specified tolerance ≤ 5.0% for ≥ 50V DC rating ≤ 7.0% for 25V DC rating	- Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V				
		≤ 9.0% for 16V DC rating ≤ 12.5% for ≤ 10V DC rating						
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rated @ room tem					
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current				
	Appearance	No defects	Deflectio	n: 2mm				
Resistance to	Capacitance Variation	≤ ±30%	Test Time: 3	30 seconds 7 1mm/sec				
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)						
	Insulation Resistance	≥ Initial Value x 0.1	90 mm					
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.1					
	Appearance	No defects, <25% leaching of either end terminal						
	Capacitance Variation	≤ ±20%						
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2				
Soluer Heat	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.				
	Dielectric Strength	Meets Initial Values (As Above)		1				
	Appearance	No visual defects	Step 1: -30°C ± 2°	30 ± 3 minutes				
	Capacitance Variation	≤ ±20%	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes				
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ±2 hours at room temperature					
	Appearance	No visual defects	-					
	Capacitance Variation	≤ ±30%	Charge device with twic chamber set a					
Load Life	Dissipation Factor	≤ Initial Value x 1.5 (See Above)	for 1000 hou					
	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from test chamb temperature for 24 ± 2 h					
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	4					
	Capacitance Variation	≤ ±30%	Store in a test chamber s 5% relative humidi					
Load Humidity	Dissipation Factor	≤ Initial Value x 1.5 (See above)	(+48, -0) with rated	d voltage applied.				
Humidity	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.					
	Dielectric Strength	Meets Initial Values (As Above)						

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Y5V Dielectric Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		020	01			0402				06	603			08	05			12	06			12	10	
Solderi	ng	Reflow	/ Only		Ref	low/W	/ave		I	Reflov	/Wav	e	F	Reflow	/Wav	е		Reflow	Mfeve	è	F	Reflow	/Wav	e
Packag	ing	All Pa	aper		Α	II Pap	er			All F	Paper		Pa	per/E	mbos	sed	Pa	per/Er	nboss	ed	Pa	<u>`</u>		
(L) Length	mm	0.60 ±	0.09		1.	00 ± 0.	.10			1.60	± 0.15			2.01	± 0.20			3.20 ±	£ 0.20			3.20 :	± 0.20	1
(L) Length	(in.)	(0.024 ±	0.004)		(0.0	40 ± 0.	.004))	(0	0.063	± 0.00	6)	(0	0.079	± 0.00	8)	(().126 ±	E 0.00	B)	(0	.126 :	± 0.00	8)
W) Width	mm	0.30 ±	0.09		0.	50 ± 0.	.10			.81 ±	0.15			1.25	± 0.20			1.60 ±	£ 0.20			2.50 :	± 0.20	1
w) width	(in.)	(0.011 ±	0.004)		(0.0	20 ± 0.	.004))	(0	0.032	± 0.00	6)	(0	0.049	± 0.00	8)	(().063 ±	E 0.00	B)	(0	.098 :	± 0.00	8)
(t) Terminal	mm	0.15 ±	0.05		0.:	25 ± 0.	.15			0.35	± 0.15			0.50	± 0.25			0.50 ±	£ 0.25			.50 ±	0.25	
	(in.)	(0.006 ±	0.002)		(0.0	10 ± 0.	.006))	(0	0.014	± 0.00	6)	(0	0.020	± 0.01	0)	(().020 ±	£ 0.01	D)	(0.020 ± 0.010)		0)	
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
Сар	820																			333	X	1	-w	27.033
(pF)	1000		Α																	-	<	\sim	5	3
	2200		Α																	(5	7	L	T
	4700		Α							1					1					-	1	1		
Сар	0.010	Α	Α																		-	-		
(µF)	0.022	A																			- 10	<u>.</u>	1	
	0.047	Α				С																		
	0.10				С	С					G	G				K								
	0.22									G														
	0.33									G														
	0.47					С				G	G													
	1.0			С	С				G	G	J			N	N	N		М	М	М				Ν
	2.2				С				J					N	N				K	Q				
	4.7												Ν	N	N			Р	Q			N	Ν	
	10.0												Ν	Р			Q	Q	Х		Х	Q	Q	Z
	22.0																Q				Х	Z		
	47.0																							
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
SIZE		020)1			0402				06	603			08	05			12	06			12	10	
Letter	А	С	E		G	J		К		М	N		Р		Q	Х		Y		Z				
Max.	0.33	0.56	0.71	0	.90	0.9	4	1.02	1	.27	1.4	0	1.52	1.78		2.2	9	2.54	2.79					
Thickness	(0.013)	(0.022)	(0.028)) (0.	035)	(0.03	37)	(0.040)	(0.	050)	(0.05	55)	(0.060)) (0.	070)	(0.09	90) (0.100)	(0.1	110)				
			PAPER	PAPER EMBOSSED																				

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Gold Termination – AU Series

General Specifications

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of Gold. This termination is indicated by the use of a "7" or "G" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. Please contact the factory if you require additional information on our MLCC Gold Termination.

PART NUMBER

AU03	Y 	G	104	ĸ	A	7	2	<u>A</u>
Size AU02 - 0402 AU03 - 0603 AU05 - 0805 AU06 - 1206 AU10 - 1210 AU12 - 1812 AU13 - 1825 AU14 - 2225 AU16 - 0306 AU17 - 0508 AU18 - 0612	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric COG (NPO) = A X7R = C X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = \pm .10 pF (<10pF) C = \pm .25 pF (<10pF) D = \pm .50 pF (<10pF) F = \pm 1% (\geq 10 pF) G = \pm 2% (\geq 10 pF) J = \pm 5% K = \pm 10% M = \pm 20%	Failure Rate A = Not Applicable	Terminations G*=1.9 μ" to 7.87 μ" 7 = 100 μ" minimum	Packaging 2 = 7" Reel 4 = 13" Reel U = 4mm TR (01005) Contact Factory For Multiples*	Special Code A = Std. Product

* Contact factory for availability.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Capacitance Range (NP0 Dielectric)

PREFERRED SIZES ARE SHADED

SIZE			AU02				J03				AU05						06		
Solderii	ng		flow/Epo Vire Bonc				/Epoxy/ Bond*				flow/Epc Vire Bone						/Epoxy/ Bond*		
Packagi	ina		All Paper				Paper				er/Embo					Paper/E		d	
(L) Length	mm	1	1.00 ± 0.1	0		1.60	± 0.15			2	2.01 ± 0.2	20				3.20	± 0.20		
., -	(in.)		040 ± 0.0				<u>± 0.006)</u> ± 0.15				079 ± 0.0						± 0.008) ± 0.20		
W) Width	mm (in.)		0.50 ± 0.1 020 ± 0.0				± 0.15 ± 0.006)				049 ± 0.2						± 0.20 ± 0.008)		
(t) Terminal	mm		0.25 ± 0.1				± 0.15				0.50 ± 0.2						± 0.25		
	(in.) WVDC	(0. 16	010 ± 0.0 25	50	16	(0.014)	<u>± 0.006)</u> 50	100	16	(0.0	020 ± 0.0	10)	200	16	25	(0.020)	± 0.010) 100	200	500
Сар	0.5	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0	C C	C C	C C	GG	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.2 1.5	C			G	GG	GG	GG	J	J	J	J	J	J	J	J	J	J J	J
	1.8	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.2 2.7	C C	C C	C C	GG	GG	GG	GG	J	J	J	J	J	J	J	J	J	J J	J
	3.3	<u>с</u>	C C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.9	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	4.7 5.6	<u>с</u> с	C C	C C	G G	G G	G G	G G	J	J	J	J	J J	J J	J	J	J	J J	J
	5.0 6.8	c	C C	C C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	8.2	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	10 12	C C	C C	C C	G G	GG	G G	G G	J	J	J	J	J J	J J	J	J	J J	J J	J
	12	c	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	18	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	22 27	C C	C C	C C	GG	GG	GG	GG	J	J	J	J	J	J	J	J	J	J J	J
	33	C	C	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39	С	С	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	47 56	<u>с</u> с	C C	C C	G G	G G	G G	G G	J	J	J	J	J J	J J	J	J	J	J J	J
	68	c	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	82	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	100 120	C C	C C	C C	G G	GG	G G	G G	J	J	J	J	J J	J J	J J	J	J J	J J	J
	150	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	180	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	220 270	C C	C C	C C	GG	GG	GG	GG	J	J	J	J	J M	J	J	J	J	J J	M
	330	C	C	С	G	G	G	G	J	J	J	J	M	J	J	J	J	J	M
	390	С	C	C	G	G	G		J	J	J	J	M	J	J	J	J	J	M
	470 560	С	C	C	G G	G G	G G		J	J	J	J	M	J J	J J	J	J	J J	M
	680				G	G	G		J	J	J	J	М	J	J	J	J	J	P
	820				G	G	G		J	J	J	J	M	J	J	J	J	M	
	1000 1200				G	G	G		J	J	J	J	М	J J	J	J	J	Q Q	
	1500								J	J	J			J	J	J	М	Q	
	1800 2200								J	J	J			J J	J J	M M	M P		
	2700								J	J	N			J	J	M	P		
	3300								J	J				J	J	М	Р		
	3900 4700								J	J				J	J J	M M	P P		
	5600								5	5				J	J	M			
	6800													м	М				
	8200 0.010													M	M				
	0.012		•			-	-10/												
	0.015		~	L	~	-	W	-			L								
	0.018 0.022		< 1	<	-			T											
	0.027))		2-	*											
	0.033	_	-		L			_											
	0.039 0.047				4.														
	0.068				[t]														1
	0.082		1		5-7 -	1													
	0.1 WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
	WVDCI																		

* Contact Factory

Γ	Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Γ	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
						EMB	OSSED							

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

PREFERRED SIZES ARE SHADED

SIZE				AU10					AU12				AU13			AU14	
Solderi				flow/Epo				Ref	low/Epo	xy/			Reflow/Epoxy	1/	I	Reflow/Epoxy/	(
Packag	-			Vire Bond er/Embos					ire Bond Emboss				Wire Bond*	4		Wire Bond* All Embossed	
	mm			3.20 ± 0.2					50 ± 0.3				4.50 ± 0.30			5.72 ± 0.25	
(L) Length	(in.)			126 ± 0.0					77 ± 0.0				(0.177 ± 0.012	2)	(0.225 ± 0.010)
W) Width	mm (in)			2.50 ± 0.2					20 ± 0.2				6.40 ± 0.40			6.35 ± 0.25	、 、
	(in.) mm			098 ± 0.0				<u> </u>	26 ± 0.0				(0.252 ± 0.01) 0.61 ± 0.36	o)	($\frac{0.250 \pm 0.010}{0.64 \pm 0.39}$)
(t) Terminal	(in.)	05	(0.	020 ± 0.0	10)	500	05	(0.0	24 ± 0.0	14)	500	50	(0.024 ± 0.014			0.025 ± 0.015	
Сар	WVDC 0.5	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200
(pF)	1.0 1.2																
	1.5														~		-
	1.8 2.2																-W
	2.7														<~	\sim) TT
	3.3 3.9																DE
	4.7 5.6															i.t	
	6.8															["t l	
	8.2 10					J					+						
	12 15					J J											
	18					J											
	22 27					J											
	33					J											
	39 47					J J											
	56 68					J J											
	82					J											
	100 120					J J											
	150 180					J J											
	220					J											
	270 330					J J											
	390 470					M M											
	560	J	J	J	J	М											
	680 820	J	J J	J	J	M M											
	1000 1200	J	J J	J	J M	M M	K K	K K	K K	K K	M M	M M	M	M	M M	M M	P P
	1500	J	J	J	М	M	к	К	К	К	М	М	M	М	М	М	Р
	1800 2200	J	J J	J	M Q		K K	K K	к к	K K	M P	M M	M	M M	M M	M M	P P
	2700 3300	J	J J	J	Q		K K	K K	K K	P P	Q Q	M	M	M	M	M	P P
	3900	J	J	M			ĸ	К	ĸ	P	Q	M	M	M	M	M	Р
	4700 5600		J J	м			K K	K K	K M	P P	Q X	M	M	M	M	M	P P
	6800 8200	J	J				K	К	М	X		М	м	M	М	м	P P
	0.010		J J				К	M	M			M	M		M	M M	Р
	0.012 0.015	J	J				к М	M M				M M	M		M M	M M	P Y
	0.018						М	М				P P	M		М	М	Y
	0.022 0.027						M M	M M				Р			M P	Y Y	Y Y
	0.033 0.039						M M	M M				P P			P P		
	0.047						М	М				P		ļ	Р		
	0.068 0.082						M M	M M							P Q		
	0.1 WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	Q 50	100	200
	SIZE		50	AU10	200	500	2.0		AU12	200	500		AU13	200	50	AU14	200
* Contact Fac	-																
	Letter Max.			A 0.33	C 0.56	0	E 1.71	G 0.90	0.9		K 1.02	M 1.27	N 1.40	P (1.52 1.		Y 2.54	Z 2.79
Т	Thickness		((0.013)	(0.022	2) (0.	028)	(0.035)	(0.0		(0.040)	(0.050)	(0.055)	0.060) (0.0 EMBOSSED	070) (0.09		(0.110)
						P	AF EK							EIVIBU33EL			

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Capacitance Range (X7R Dielectric)

PREFERRED SIZES ARE SHADED

SIZE				J02					AU03							AU0								J06			
Solderin	a	R		/Ероху	/				ow/Ep								роху	/					eflow				
	<u> </u>			Bond*					ire Bo							ire Bo		1					Wire per/E				
Packagin	<u> </u>			Paper ± 0.10					All Pap 60 ± 0					ŀ		r/Em 01 ±	boss	ea					3.20				
(L) Length	mm (in.)	((± 0.10 ± 0.004	1)				63 ± 0		`						0.20	2)					.126				
	mm	((± 0.00 ± 0.10	T)				81 ± 0		/					$25 \pm$,					1.60				
W) Width	(in.)	(0		± 0.004	4)				32 ± 0)						0.008	3)					.063				
	mm	(± 0.15	-/				35 ± 0		,					50 ±		-/					0.50				
(t) Terminal	(in.)	(0	0.010 :	± 0.006	5)			(0.0	14 ± 0	.006))				(0.0	20 ±	0.010))				(0	.020	± 0.01	10)		
WVDC		10	16	25	50	6.3	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
Сар	100																										
(pF)	150																										
(P.)	220				С				G																	\vdash	
	330				С					G	G	G		J	J	J	J	J	J								K
	470 680				C C					G G	G G	G G		J J	J	J	JJ	J	J								K K
	1000				C C					G	G	G		J	J	J	J	J	J							┢━━┥	K
	1500				c					G	G	0		J	J	J	J	J	J		J	J	J	J	J	J	M
	2200				c					G	G			J	J	Ĵ	J	J	J		J	J	J	J	J	J	M
	3300			С	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	4700			С	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	6800		С	С		1				G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
Сар	0.010		С					G		G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
μF)	0.015		С						G	G				J	J	J	J	J	J		J	J	J	J	J	м	
((, , , , , , , , , , , , , , , , , ,	0.022	С	С						G	G				J	J	J	J	J	N		J	J	J	J	J	М	
	0.033	С							G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.047							G	G	G				J	J	J	J	N			J	J	J	J	J	M	
	0.068						G	G G	G G	G G				J J	J J	J	J	N			J J	J	J	J J	J	P P	
	0.10					G	G	G	G	G				J	J	J	N	N			J	J	J	J	Q	Р	
	0.13					G	G							J	J	N	N	N			J	J	J	J	Q		
	0.22													N	N	N	N	N			J	J	M	P	Q		
	0.47													N	N	N	N	N			M	M	M	P	Q		
	0.68													N	N	N					M	M	Q	Q	Q		
	1.0													Ν	Ν	N					М	М		Q	Q		
	1.5																				P	Q	Q				
	2.2															P*					Q	Q	Q			\vdash	
	3.3													P.													
	4.7													P*							Q	Q					
	10 22																			0*	Q*					┟──┨	
	47																			Q*							
	100																										
	WVDC	10	16	25	50	63	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
	SIZE	10	10	AU02			1.0	10	AU03		100	200			1.0	AUO		100	2					J06	100	2001	
	0126																								_		

* Contact Factory

Letter	А	C	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	DSSED			

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Gold Termination – AU Series

Capacitance Range (X7R Dielectric)

PREFERRED SIZES ARE SHADED

SIZE					AU10					AU	12		AL	J13	AL	J14
Soldering	n				flow/Epo						/Epoxy/			/Epoxy/		/Epoxy/
	5				Vire Bond						Bond*			Bond*		Bond*
Packagin	•				er/Embos 3.20 ± 0.2					All Em 4.50 :				bossed ± 0.30		bossed ± 0.25
(L) Length	mm (in.)				126 ± 0.2						± 0.30 ± 0.012)			± 0.30 ± 0.012)		± 0.25 ± 0.010)
	mm				120 ± 0.0 2.50 ± 0.2					3.20 :			<u>``</u>	± 0.012) ± 0.40		± 0.010) ± 0.25
W) Width	(in.)			(0.	098 ± 0.0	08)				(0.126 :	± 0.008)			± 0.016)		± 0.010)
(t) Terminal	mm				0.50 ± 0.2	5				0.61 :	± 0.36		0.61 :	± 0.36	0.64	± 0.39
	(in.)				020 ± 0.0					(0.024 :			<u> </u>	± 0.014)		± 0.015)
WVDC		10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
Сар	100															
(pF)	150															
	220											I				I
	330											1-	1	\leq	-W_	-
	470 680										~				\sum	-
	1000										×	(-	-			[T —
	1500	J	J	J	J	J	J	м)			_
	2200	J	J	J	J	J	J	M					~	-		
	3300	J	J	J	J	J	J	M					4	-		
	4700	J	J	J	J	J	J	м					rt	1		
	6800	J	J	J	J	J	J	м								
	0.010	J	J	J	J	J	J	М	K	K	K	К	М	М	М	Р
Cap (µF)	0.015	J	J	J	J	J	J	Р	к	ĸ	ĸ	Р	М	м	М	Р
(μr)	0.022	J	J	J	J	J	J	Q	к	ĸ	ĸ	Р	М	м	М	Р
	0.033	J	J	J	J	J	J	Q	K	K	К	X	М	М	M	Р
	0.047	J	J	J	J	J	J		К	K	К	Z	M	M	M	Р
	0.068	J	J	J	J	J	M		K	K	K	Z	M	M	M	Р
	0.10	J	J	J	J	J	M		K	K	K	Z	M	M	M	P
	0.15 0.22	J J	J J	J J	J J	M P	ZZ		K K	K K	P P		M M	M	M	P P
	0.22	J	J	J	J	Q			K	M	X X		M	M	M	P
	0.47	M	M	M	M	Q			ĸ	P			M	M	M	P
	0.68	М	М	P	x	Х			М	Q			М	Р	М	Р
	1.0	N	N		Х	Z			М	Х			М	Р	М	Р
	1.5	Ν	Ν	Z	Z	Z			Z	Z			М		М	Х
	2.2	X	X	Z	Z	Z			Z	Z					М	
	3.3 4.7	X X	X X	Z Z	Z Z				Z Z							
	4.7	z	Z	Z	2				Z							
	22	2	2	2									<u> </u>		<u> </u>	
	47															
	100															
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
	SIZE		AU10							AU	12		AU	J13	AL	J14

* Contact Factory

Letter	A	С	E	G	J	K	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	DSSED			

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

050219

MLCC Gold Termination – AU Series

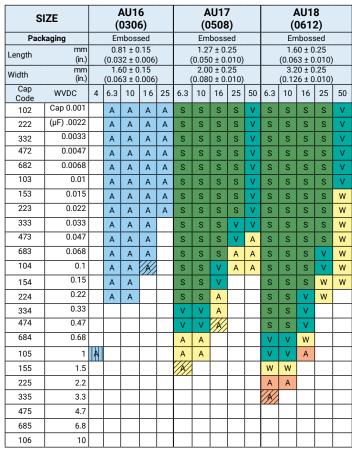
Capacitance Range (X5R Dielectric)

PREFERRED SIZES ARE SHADED

	SIZE				AL	J02						AUO:	3					AL	105					AL	J06						AU1	0				A	U12	
:	Soldering	g				/Epo Bono				F		ow/E re Bo		y					/Epo Bono						/Epo Bono					Reflo Wir	ow/E re Bo		у		R		w/Ep e Bor	oxy/ nd*
F	Packagin	g			All F	Pape	r				Al	l Pap	ber				Pap	er/Ei	mbo	ssec			Pap	er/E	mbo	ssec	1		Pa	aper	/Eml	boss	sed		4	All Er	nbos	sed
(L) Len	igth	mm (in.)				± 0.1 ± 0.0						50 ± 0 53 ± 0)					± 0.20						± 0.2 ± 0.0					3.2 (0.12	20 ± 0 26 ± 0)			4.50 (0.17	0 ± 0. 7 ± 0.	
(W) Wi	dth	mm				± 0.1						31 ± 0							± 0.20						± 0.2						50 ± 0				1		0 ± 0.:	
()		(in.)		<u>``</u>		± 0.0					```	32 ± 0)			<u>``</u>		± 0.00				<u>``</u>		± 0.0	<u>, </u>				(0.09)		((0.126		
(t) Terr	ninal	mm (in.)				± 0.1 ± 0.0						85 ± 0 4 ± 0)					± 0.25 ± 0.01						± 0.2 ± 0.0					(0.02	50 ± 0)			0.0 /0.02	1 ± 0.3 4 + 0	
	WVDC	()	4	<u>``</u>	10		25	50	4	6.3	<u>`</u>				50	6.3			25		50	6.3				35	50	4	6.3				35	50			25	50
Сар		100																																				
(pF)		150																																				
		220																																				
		330						С																														
		470						С																														
		680						С																												\vdash		
		1000						С																														
		1500						C																														
		2200 3300						C C																	-						-					\vdash		
		4700					С								G																							
		6800					c								G																							
Сар		0.010					C								G																					<u> </u>		
(μF)		0.015					С						G	G	G																							
		0.022				С	С						G	G	G						Ν																	
		0.033				С							G	G	G						Ν																	
		0.047				С	С						G	G	G						Ν																	
		0.068				С							G		G						Ν															\vdash		
		0.10		С		С	С						G		G				Ν		Ν																	
		0.15		0.1								0	G						N	N																		
		0.22		C*					<u> </u>			G	G G						N	N					-		0					-			-	—	\mid	
		0.33 0.47	C*									G G	G						N N						Q	Q	Q											
		0.47	U									G							N						Y Y	Q								x				
		1.0		-		-			-	G	G	G	J*			N		N	N		P*			-	Q	Q		-	-	-	-	X	X	X	-	+	$\left - \right $	
		1.5														N																						
		2.2	C*						G*	G*	J*	J*				N	N	N	Ν					Q	Q							Z	X					
		3.3							J*	J*	J*	J*				Ν	N					Q	Q															
		4.7							J*	J*	J*						N	N*	N*			Q	Q	Q	Q						Q	Z						
		10							K*							P*	P*	P*				Q	Q	Q	Q*					Х	Z	Z				\vdash	Z	
		22														P*						Q*	Q*	Q*					Z	Z	Z	Z						
		47																				Q*							Z*									
		100		6.0	10	10	05	50		6.0	10	10	05	05	50	6.0	10	10	05	05	50	6.0	10	10	05	05	50	Z*	Z*	10	10	05	05	50	6.0	10	05	50
		WVDC	4	6.3	10	16	25	50	4	6.3				35	50	6.3	10		25	35	50	6.3	10		_	35	50	4	6.3			_	35	50	6.3		25	50
		SIZE			AU	J02					-	AUO:	5					AU	105					AL	J06						AU1	U				A	U12	

🔇 KY<u>OCERa</u>

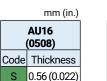
* Contact Factory


Letter	А	С	E	G	J	К	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

= *Optional Specifications – Contact Factory

NOTE: Contact factory for non-specified capacitance values

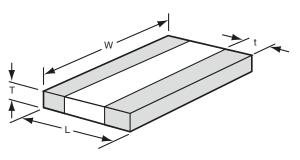
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


MLCC Gold Termination – AU Series AU16/AU17/AU18

Solid = X7R

0.76 (0.030)

1.02 (0.040)


S V

А

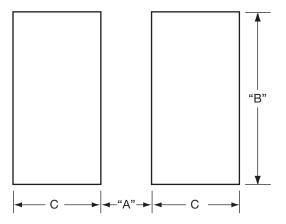
	mm (in.)
	AU16 (0612)
Code	Thickness
S	0.56 (0.022)
V	0.76 (0.030)
W	1.02 (0.040)
А	1.27 (0.050)

= X7S

PHYSICAL DIMENSIONS AND **PAD LAYOUT**

PHYSICAL DIMENSIONS

MM (IN.) w

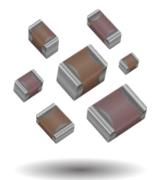

KYOCERa

	L	W	t
AU16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
AU17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
AU18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

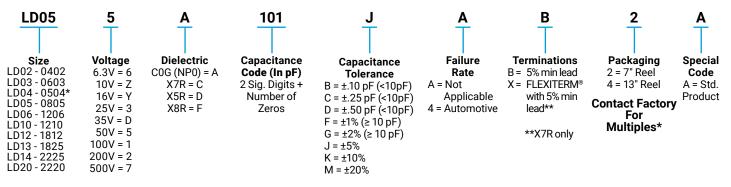
PAD LAYOUT DIMENSIONS **MM (IN.)**

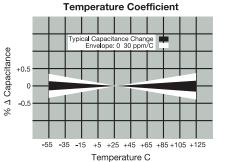
	Α	В	С
AU16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
AU17 (0508)	0.51 (0.020)	2.03 (0.080)	0.51 (0.020)
AU18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

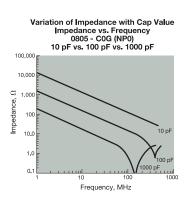


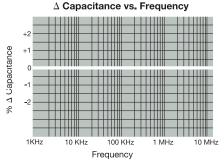
KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAC

MLCC Tin/Lead Termination "B" (LD Series)


COG (NP0) - General Specifications


KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION) Not RoHS Compliant



*LD04 has the same CV ranges as LD03.

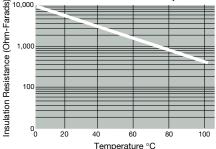
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Variation of Impedance with Chip Size Impedance vs. Frequency 1000 pF - C0G (NP0)

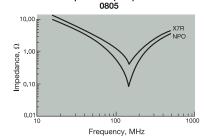
1206

0805

10


1.0

0.1


Impedance, Ω

See FLEXITERM® section for CV options

Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - COG (NPO) vs X7R

KINCE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

100

Frequency, MHz

1000

MLCC Tin/Lead Termination "B" COG (NP0) - Specifications and Test Methods

Parame	ter/Test	NP0 Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	Cycle Chamber
Capac	itance	Within specified tolerance	Freq.: 1.0 MHz ± 10	% for cap ≤ 1000 pF
C	2	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% fc Voltage: 1.0	or cap > 1000 pF
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device witl 60 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device wit for 500V	and discharge current 0 mA (max) h 150% of rated voltage
	Appearance	No defects	Deflectio	
Resistance to Flexure	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Test Time: :	30 seconds 7 1mm/sec
Stresses	Q	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3		mm
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater		
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic seconds. Store at room	temperature for 24 ± 2
oolder Heat	Insulation Resistance	Meets Initial Values (As Above)	hours before measurin	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roo	
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twi	
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	chamber set a for 1000 hou Remove from test chaml	urs (+48, -0).
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature before m	for 24 hours
	Dielectric Strength	Meets Initial Values (As Above)		-
	Appearance	No visual defects		
	Capacitance Variation	$\leq \pm 5.0\%$ or $\pm .5$ pF, whichever is greater	Store in a test chamber s	set at 85°C + 2°C/ 85%
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humid (+48, -0) with rate	ity for 1000 hours d voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 h	r and stabilize at room ours before measuring
	Dielectric Strength	Meets Initial Values (As Above)		

KYDEERB The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Tin/Lead Termination "B" COG (NP0) – Capacitance Range

PREFERRED SIZES ARE SHADED

						1	E]		
SIZE			LD02			LD	03				LD05					LD0	6		
Solderi			eflow/Wa				v/Wave				flow/Way					Reflow/			
Packag			All Pape				Paper				er/Embos				P	aper/Em			
(L) Length	mm (in.)		.00 ± 0.1 040 ± 0.0				± 0.15 ± 0.006)				.01 ± 0.20)79 ± 0.00					3.20 ± (0.126 ± (
	mm		540 ± 0.0				± 0.000) ± 0.15				$.25 \pm 0.20$					1.60 ± 0			
W) Width	(in.)		020 ± 0.0				± 0.006))49 ± 0.00				((0.063 ± (
(t) Terminal	mm		.25 ± 0.1				± 0.15				.50 ± 0.2					0.50 ± 0			
	(in.) WVDC		010 ± 0.0		10		± 0.006)	100	10		$\frac{100 \pm 0.07}{100}$		200	10		(0.020 ± 0)		000	
Сар	0.5	16 C	25 C	50 C	16 G	25 G	50 G	G	16 J	25 J	50 J	100 J	J	16 J	25 J	50 J	100 J	200 J	500 J
(pF)	1.0	č	c	č	G	G	G	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ
	1.2	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.5	<u>С</u> С	C C	C C	GG	G	G G	G	J	J	J	J	J	J	J	J	J	J	J
	1.8 2.2	C	C C	C C	G	G	G	G	J	J J	J	J	J	J	J	J	J	J	J
	2.7	č	c	č	G	G	G	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ
	3.3	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.9	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	4.7 5.6	<u>С</u> С	C C	C C	GG	GG	G G	G	J	J	J	J	J J	J	J	J	J	J	J
	6.8	c	C C	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	8.2	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	10	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J		J
	12 15	C C	C C	C C	G G	G G	G G	G G	J	J J	J	J	J J	J	J	J	J	J J	J
	13	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	22	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	27	<u>C</u>	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	33 39	C C	C C	C C	GG	G	GG	G G	J	J J	J	J	J J	J J	J	J	J	J	J
	47	c	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	56	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	68	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	82 100	<u>С</u> С	C C	C C	G G	G	G	G G	J	J J	J	J	J J	J	J	J	J	J	J
	120	c	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	150	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	180	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	220 270	C C	C C	C C	GG	GG	GG	G G	JJ	J	J	J	J M	J	J	J	J	J J	M
	330	<u> </u>	C	C	G	G	G	G	J	J	J	J	M	J	J	J	J	J	M
	390	С	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	м
	470	С	С	С	G	G	G		J	J	J	J	М	J	J	J	J	J	M
	560 680				G G	GG	G G		J J	J J	J	J J	М	J	J	J	J	J J	M P
	820				G	G	G		J	J	J	J		J	J	J	J	M	
	1000				G	G	G		J	J	J	J		J	J	J	J	Q	
	1200					G			J	J	J			J	J	J	J	Q	
	1500 1800								J J	J J	J			J J	J	J M	M	Q	
	2200								J	J	N			J	J	M	P		
	2700								J	J	N			J	J	м	Р		
	3300								J	J				J	J	M	P		
	3900 4700								J	J				J	J	M	P P		
	5600									5				J	J	M			
	6800													М	м				
Can	8200													M	M	<u> </u>			\mid
Cap (pF)	0.010 0.012													М	M				
(F.)	0.015		L	>			' <u> </u>												
	0.018		-	-1	~		~												
	0.022 0.027		1				ÎT												
	0.033		1	_	11-	1.	1												
	0.039				i J														
L	0.047		Ļ		t														
	0.068 0.082			8	Î	1	1												
	0.082																		
	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25		100	200	500
	SIZE		LD02			LD	03				LD05					LD0	6		

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	OSSED			

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Tin/Lead Termination "B" COG (NP0) – Capacitance Range

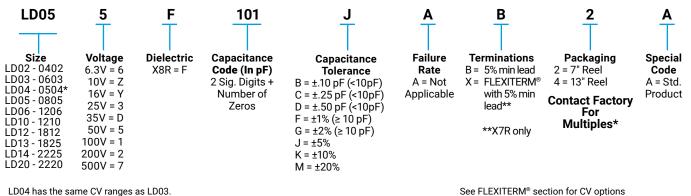
PREFERRED SIZES ARE SHADED

SIZE			LD10					LD12				LD13			LD14	
Soldering		F	Reflow On	ly				Reflow Or	nly			Reflow Only			Reflow Only	
Packaging		· ·	er/Embos					II Embos				All Embossed			All Embossed]
(L) Length mm (in.)		(0.	3.20 + 0.2 126 ± 0.0	08)			(0	4.50 ± 0.3 .177 ± 0.0)12)			4.50 ± 0.30 (0.177 ± 0.012)		5.72 ± 0.25 (0.225 ± 0.010	I)
W) Width mm (in.)			2.50 ± 0.2 098 ± 0.0					3.20 ± 0.2 .126 ± 0.0				6.40 ± 0.40 (0.252 ± 0.016)		6.35 ± 0.25 (0.250 ± 0.010))
(t) Terminal mm (in.)		(0.50 ± 0.2 020 ± 0.0	5				0.61 ± 0.3	36			0.61 ± 0.36 (0.024 ± 0.014			0.64 ± 0.39 (0.025 ± 0.015	
WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200
Cap 0.5 (pF) 1.0 1.2 1.5																
1.8 2.2 2.7																w.
3.3 3.9															\leq	DF
4.7 5.6 6.8															1	
8.2 10 12 15					J J J											
13 18 22 27]]]											
33 39 47					J											
56 68 82]]]											
100 120					J											
150 180 220 270					J J J											
330 390 470					J M M											
560 680 820	J	J	J	J J	M M											
1000 1200 1500	J J	J J J	J J J	J J M M	M M M	K K K	K K K	K K K	K K K	M M M	M M M	M M M	M M M	M M M	M M M	P P P
1800 2200 2700	J	J J J	1 1 1	M Q Q		K K K	K K K	K K K	K K P	M P Q	M M M	M M M	M M M	M M M	M M M	P P P
3300 3900 4700	J J J	J J J	J M M			P P P	P P P	P P P	P P P	Q Q Y	M M M	M M M	M M M	M M M	M M M	P P P
5600 6800 8200	L L L	J J J				P P P	P P P	P Q Q	P Q Q	Y Y Y	M M M	M M M	M M	M M M	M M M	P P P
Cap 0.010 (pF) 0.012 0.015	J	J				P P P	P P P	Q Q Q	Q X X	Y Y Y	M M M	M M M		M M M	M M M	P P Y
0.018 0.022 0.027						P P Q	P P X	X X X	X X Z	Y	P P P	М		M M P	M Y Y	Y Y Y
0.033 0.039 0.047						Q X X	X X X	X Z Z	Z Z Z		P P P			P P P		
0.068 0.082 0.1						Z Z Z	Z Z Z	Z Z Z						P Q Q		
WVDC SIZE	25	50	100 LD10	200	500	25	50	100 LD12	200	500	50	100 LD13	200	50	100 LD14	200
0.22																

Letter	А	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
		·	PAPER					·	EMB	ISSED	°		

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X8R – General Specifications



KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

> KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAC

X8R – Specifications and Test Methods

Paramet	ter/Test	X8R Specification Limits	Measuring	
Operating Tem	•	-55°C to +150°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance	Freg.: 1.0 k	(Hz + 10%
Dissipatio	on Factor	\leq 2.5% for \geq 50V DC rating \leq 3.5% for 25V DC and 16V DC rating	Voltage: 1.0	
Insulation I	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roc	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) h 150% of rated voltage
	Appearance	No defects	Deflectio	n [.] 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90	mm
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	test chamber set for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
Tamaty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)		ore measuring.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X8R – Capacitance Range

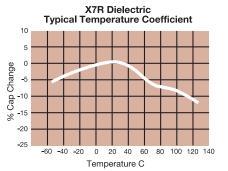
	SIZE	LD	03	LD	05	LD	06
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822		G	G	J	J	J	J
103	(μF) 0.01	G	G	J	J	J	J
123	0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	M	М
683	0.068	G		N	N	М	М
823	0.082			N	N	М	М
104	0.1			N	N	М	М
124	0.12			N	N	М	М
154	0.15			N	N	М	М
184	0.18			N		М	М
224	0.22			N		М	М
274	0.27					М	М
334	0.33					M	М
394	0.39					М	
474	0.47					М	
684	0.68						
824	0.82						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	LD	03	LD	05	LD	06

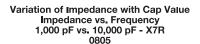
Letter	A	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
		•	PAPER						EMBC	SSED			

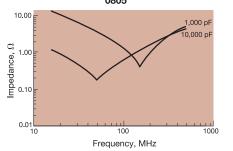
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

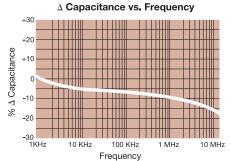
X7R – General Specifications

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

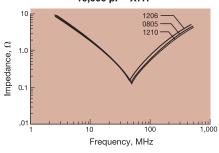

Not RoHS Compliant

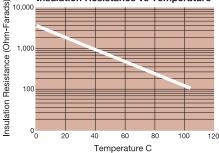

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

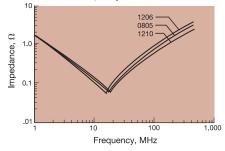



*LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.






Variation of Impedance with Chip Size Impedance vs. Frequency 10,000 pF X7R

Insulation Resistance vs Temperature 10,000

Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7R

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available **KYOCERa** online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

X7R – Specifications and Test Methods

Parame	ter/Test	X7R Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Сарас	itance	Within specified tolerance	-	
Dissipatio	on Factor	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0	
Insulation I	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) n 150% of rated voltage
	Appearance	No defects	Deflectio	n [.] 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	citanceion FactorResistancec StrengthAppearanceCapacitance VariationDissipation FactorInsulation Resistancecapacitance VariationDissipation FactorInsulation ResistanceAppearanceCapacitance VariationDissipation FactorInsulation ResistanceDissipation FactorDissipation FactorDissipation FactorDissipation ResistanceDielectric StrengthAppearanceCapacitance VariationDissipation FactorDissipation FactorDissipation FactorDielectric StrengthAppearanceCapacitance VariationDissipation FactorInsulation ResistanceDielectric StrengthAppearanceCapacitance VariationDissipation FactorInsulation ResistanceDielectric StrengthAppearanceCapacitance VariationDissipation FactorDielectric StrengthAppearanceCapacitance VariationDissipation FactorDislectric StrengthAppearanceCapacitance VariationDissipation FactorDislectric StrengthAppearanceDislectric StrengthAppearanceDissipation FactorDissipation FactorDissipation Factor	Meets Initial Values (As Above)		
		≥ Initial Value x 0.3	90 r	nm
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Resistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Appearance Capacitance Variation Factor Insulation Resistance Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitanc	No defects, <25% leaching of either end terminal	-	
		≤ ±7.5%	_	
Resistance to Solder Heat	Capacitance Variation Dissipation Factor Insulation Resistance Solderability Appearance Capacitance Variation Resistance Solderability Appearance Capacitance Variation Factor Insulation Resistance Dislopation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dislopation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dislectric Strength Appearance Capacitance Variation Resistance Dislectric Str	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room hours before measuring	temperature for 24 ± 2
		Meets Initial Values (As Above)		g electrical properties.
		Meets Initial Values (As Above)		1
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
		≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock		Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
		Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	••	No visual defects	-	
	Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
		Meets Initial Values (As Above)		
	••	No visual defects	-	
	ResistanceabilityAppearanceNCapacitance VariationNCapacitance VariationNDissipation FactorNInsulation ResistanceNDielectric StrengthNAppearanceNCapacitance VariationNDissipation FactorNDissipation FactorNDissipation FactorNDielectric StrengthNAppearanceNDielectric StrengthNAppearanceNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation FactorNDissipation 	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	0 11
,, ,		≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)		

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7R – Capacitance Range

PREFERRED SIZES ARE SHADED

								-														Ē				
SIZE			LD02					LD03							LD05							LD				
Solderi Packagi			low/W					low/V							low/W	<u>/ave</u> ossed						Reflow aper/Er				
	mm		00 ± 0					60 ± 0							$01 \pm 0.$						F0	3.20 ±		eu		
(L) Length	(in.)		40 ± 0					63 ± 0							79 ± 0.						(0.126 ±		8)		
W) Width	mm (in.)		50 ± 0 20 ± 0				0.0	81 ± 0 32 ± 0	.15					1.1	25 ± 0. 49 ± 0.	.20						1.60 ± 0.063 ±	0.20			
	(iii.)		20 <u>1</u> 0 25 ± 0					35 ± 0							50 ± 0.50						(0.50 ±		5)		
(t) Terminal	(in.)		10 ± 0					14 ± 0							20 ± 0.						(0.020 ±		0)		
WVDC		16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
Сар	100																									
(pF)	150																									
	220			С																						
	330			C					G	G	G		J	J	J	J	J	J						1		K
	470			C					G	G	G		J	J	J	J	J	J								K
	680			C					G	G	G		J	J	J	J	J	J								K
	1000			C					G	G	G		J	J	J	J	J	J								K
	1500			С					G	G			Ĵ	J	Ĵ	J	J	J		J	J	J	J	J	J	м
	2200			С					G	G			Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ		J	Ĵ	Ĵ	Ĵ	J	J	м
	3300		С	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	4700		С	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	м
	6800	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
Сар	0.010	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
(µF)	0.015	С		1				G	G				J	J	J	J	J	J		J	J	J	J	J	М	
	0.022	С						G	G				J	J	J	J	J	N		J	J	J	J	J	М	
	0.033	С						G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.047						G	G	G				J	J	J	J	N			J	J	J	J	J	M	
	0.068						G	G	G				J	J	J	J	N			J	J	J	J	J	P	
	0.10		C*			G	G	G	G				J	J	J	J	N			J	J	J	J	Р	Р	
	0.15			1	G	G				1			J	J	J	N	N			J	J	J	J	Q		
	0.22				G	G							J	J	Ν	N	N			J	J	J	J	Q		
	0.33												N	N	N	N	N			J	J	M	Р	Q		
	0.47							J*					N	N	N	N	N			М	M	M	P	Q		
	0.68												N	Ν	Ν					М	М	Q	Q	Q		
	1.0					J*	J*						N	N	N*					М	M	Q	Q	Q		
	1.5																			Р	Q	Q				
	2.2				J*										P*					Q	Q	Q				
	3.3																									
	4.7												P*	P*						Q*	Q*	Q*				
	10											P*	P							Q*	Q*	Q				
	22																		Q*							
	47																									
	100																									
	WVDC	16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
	SIZE		LD02					LD03							LD05							LD	06			

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

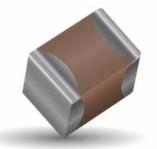
= Under Development

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7R – Capacitance Range

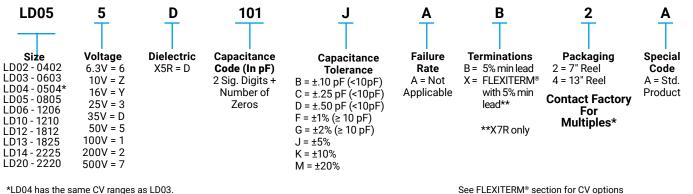
PREFERRED SIZES ARE SHADED

SIZE					LD10					LD	12		LD	13		LD	20		LD	014
Solderin	ıg			R	eflow On	ly				Reflov	v Only		Reflow	w Only		Reflow	v Only		Reflow	w Only
Packagii	ng			Pape	er/Embos	ssed				All Emb				bossed		All Em				bossed
(L) Length	mm				.20 + 0.2					4.50 ±				± 0.30			± 0.50		1	± 0.25
	(in.)				26 ± 0.0					(0.177 ±				± 0.012)		(0.224 :				± 0.010)
W) Width	mm				.50 ± 0.2					3.20 ±				± 0.40			± 0.40		1	± 0.25
,	(in.)				98 ± 0.0					(0.126 ±				± 0.016)			± 0.016)			± 0.010)
(t) Terminal	mm (in)				.50 ± 0.2					0.61 ±				± 0.36			± 0.39			± 0.39
WVDC	(in.)	10	16	25	20 ± 0.0 50	10)	200	500	50	(0.024 ±	200	500	50	± 0.014) 100	25	<u>(0.025</u> : 50	<u>± 0.015)</u> 100	200	50	± 0.015) 100
Cap	100	10	10	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
(pF)	150																			
(рі)	220																		ļ	
	330															t	-1	\sim		- —
	470															×	<	<u> </u>)) Ťī	-
	680																			-
	1000															T		1		
	1500	J	J	J	J	J	J	м										t		
	2200	J	J	J	J	J	J	М											I	
	3300	J	J	J	J	J	J	м												
	4700	J	J	J	J	J	J	М												
	6800	J	J	J	J	J	J	M												
	0.010	J	J	J	J	J	J	M	K	K	K	K	M	M		X	X	X	M	P
	0.015	J	J	J	J	J	J	P	K K	K	K	P P	M	M		X	X X	X X	M	P P
	0.022	 	J J	J J	J J	J	J J	Q O	K	K K	K K	X	M	M		X X	X	X	M	P
	0.033	J	J	J	J	J	J	ų į	K	K	K	z	M	M		X	x	x	M	P
	0.068	J	J	J	J	J	M		ĸ	ĸ	ĸ	z	M	M		x	x	x	M	P
	0.10	J	J	J	J	J	M		K	K	K	Z	M	M		X	X	X	M	P
	0.15	J	J	J	J	М	Z		к	к	Р		м	м		х	x	х	м	Р
	0.22	J	J	J	J	Р	Z		к	к	Р		М	М		х	x	х	М	Р
	0.33	J	J	J	J	Q		ĺ	K	М	Х	İ	М	М		Х	X	Х	М	Р
	0.47	М	М	М	М	Q			K	P			M	М		X	X	X	M	P
	0.68	М	М	Р	Х	Х			М	Q			M	Р		Х	X		М	Р
	1.0	N	N	Р	Х	Z			М	X			M	Р		Х	X		М	Р
	1.5	N	N	Z	Z	Z			Z	Z			M			X	X		M	Х
	2.2	X	X	Z	Z	Z			Z	Z						X	X		М	
	3.3	X	X	Z Z	Z Z				Z Z	Z						X X	Z Z			
	4.7 10	X Z	X Z	Z	Z				2	Z						Z	Z			
	22	 Z	Z	2	2										Z	2	2			
	47	Z	2												2					
	100	2																		
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
SIZE					LD10					LD				13			20		-	014


Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	DSSED			

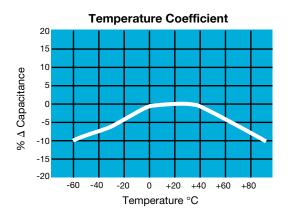
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

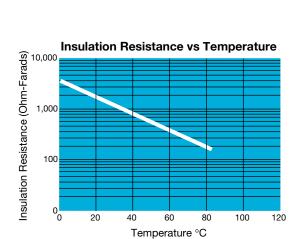
X5R – General Specifications



KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)



*LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

X5R – Specifications and Test Methods

Parame	ter/Test	X5R Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +85°C	Temperature C	ycle Chamber
Сарас	itance	Within specified tolerance		
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roc	rated voltage for m temp/humidity
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	nm
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.9	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		1
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	and measure after om temperature
	Appearance	No visual defects		V . I I. I. I.
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 chamber set at 85°C : (+48, -0). Note: Contac	± 2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	specification part numl < 1.5X rate	bers that are tested at
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb	er and stabilize at room
	Dielectric Strength	Meets Initial Values (As Above)	temperature for 24 ± 2 h	ours betore measuring.
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	ty for 1000 hours
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	l voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)		

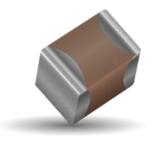
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X5R – Capacitance Range

PREFERRED SIZES ARE SHADED

					•						⊞						Œ	I					Π							\square							
SIZE	E			L	002					L	.D0	3					LD	05					LD	06					L	.D1()				LD	12	
Solder	ring		R	eflo	N/W	ave				Reflo	w/V	Vave	9			Re	flow	/Wav	/e			Re	eflow	/Wav	/e				Refle	ow/V	Vave						
Packag	ging				Рар						Pap				P	ape				d	Р		r/En			d		Pa		/Emb		ed					
L) Length	mm				± 0.					1.60								: 0.20					.20 ±							0 ± 0							
	(in.) 				±0. ±0.	004)		-	((0.8			6)					0.00					126 ±					($\frac{6 \pm 0}{0 \pm 0}$)					_
N) Width	(in.)					004)			((0.8).032			6)					: 0.20					.00 <u>+</u>)63 ±					(8 ± 0)					
(t) Terminal	mm				± 0.			1	ì		5 ± 0							0.2					.50 ±					Ì		0 ± 0							
WVD	(in.)					006)	1 50			0.01				50	62			0.0		50	6.2		120 ± 16			50	4			0 ± 0			50	6.3	101	25	5
Cap	100	4	0.5	10	10	23	30	4	0.5	10	10	25	33	30	0.5	10	10	25	35	50	0.5	10	10	23	55	50	4	0.5	10	10	23	35	50	0.5	10	23	-
(pF)	150																																		1		
(рі)	220						С	i -																													
	330						C																												H		,
	470						С																							.1~	\mathbf{F}	\geq	\leq	<u>₹</u> _v	٧	-	
	680						С																					~	<	~	<	_			^{	Î.	
	1000						С																											\bot	ノニ	Ľ	
	1500						С																								l	\downarrow					
	2200						С																									-					
	3300						С																									L I					
	4700					С								G																							
	6800					С	_							G																					\square		-
Cap	0.010					C							0	G																							
(µF)	0.015				0	C C						G	G	G																							
	0.022				C C		-	-				G G	G G	G G						N N												-			\vdash		
	0.033				c	с						G	G	G						N																	
	0.047				c							G	0	G						N																	
	0.10			С	c	С						G		G				N		N									_						H		-
	0.15											G						N	N																		
	0.22		C*								G	G						Ν	N							Q											
	0.33							1			G	G						Ν														1					ī
	0.47	C*	C*								G		1					Ν						Q	Q								Х				
	0.68										G							Ν																			
	1.0	C*	C*	C*					G	G	G	J*					Ν	Ν		P*				Q	Q						Х	Х	Х		1		
	1.5																														_						
	2.2	C*						G*		J*	J*					N	Ν	Ν			×	X	Q	Q							Ζ	Х			\square		-
	3.3							J*	J*	*	J*				N	N	NI+	NI+			X	X	V	v						0	7						
	4.7 10							J* K*	J*	J*					N P	N P	N*	N*			X X	X X	X X	X X					Х	Q Z	Z Z					Z	
	22						+	IN."							P*	2		-	-		X	X X	X	X		$\left \right $		Z	X Z	Z	Z	-			\vdash	2	Ē
	47														- ·						x	^	^	^				Z*	2	2	2						
	100																										Z*	z									
	WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	!
	SIZE			L	002					L	D03	3					LD	05					LD	06					L	D10)				LD	12	

Letter	A	C	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSFD			


*Optional Specifications - Contact factory

NOTE: Contact factory for non-specified capacitance values

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Automotive MLCC General Specifications

GENERAL DESCRIPTION

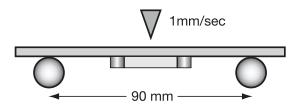
KYOCERA AVX has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

KYOCERA AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

HOW TO ORDER

0805	5	<u>A</u>	104	K	4	Ţ	2	<u>A</u>
Size 0402 0603 0805 1206 1210 1812	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric NP0 = A X7R = C X8R = F	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. 10 F = 106	Capacitance Tolerance $B = \pm 0.1pF (<10pF)^*$ $C = \pm 0.25pF (<10pF)^*$ $D = \pm 0.5pF (<10pF)^*$ $F = \pm 1\%^*$ $G = \pm 2\%^*$ $J = \pm 5\% (<=1\mu F)$ $K = \pm 10\%$ $M = \pm 20\%$ *NPO only	NOTE: Conta	U = Conductive Epo	4 = 13" Reel y erance Options for cified capacitance	

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON


	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

FLEXITERM FEATURES

- a) Bend Test
 - The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

 a) Temperature Cycle testing FLEXITERM[®] has the ability to withstand at least 1000 cycles between -55°C and +125°C

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Automotive MLCC-NP0

Capacitance Range

Case	Size		0402				0603						0805							12	06				1210 3.20 ± 0.20						
Length (L)	mm (in.)		1.00 ± 0.1 040 ± 0.0				1.60 ± 0.1 .063 ± 0.0						2.01 ± 0.2 079 ± 0.0							(0.126								3.20 ± 0.20 126 ± 0.00			
Width (W)	mm (in.)	(0.	0.50 ± 0.1 020 ± 0.0	04)		(0	0.81 ± 0.1 .032 ± 0.0	06)				(0.	1.25 ± 0.2 049 ± 0.0	08)						(0.063							(0.	2.50 ± 0.20 098 ± 0.00	08)		
Terminal (t)	mm (in.)		0.25 ± 0.1 010 ± 0.0			(0	0.35 ± 0.1 .014 ± 0.0	5 06)					0.50 ± 0.2 020 ± 0.0							0.50 (0.020	± 0.25 ± 0.010)	_					(0.	0.50 ± 0.2 020 ± 0.0	5 10)		
CAP	CAP Code	25	50	100	25	50	100	200	250	25	50	100	200	250	500	630	25	50	100	200	250	500	630	1000	50	100	200	250	500	630	1000
0.5	0R5	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
1 5	1R0 5R0	C C	C C	C C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q	Q Q	J	J	J	J	J	J	J
10	100	c	c	c	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
12	120	C	С	C	G	G	G	G	G	J	J	J	J	J	-	-	J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
15	150	С	С	С	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
18	180	С	С	С	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
22 27	220 270	C C	C C	C C	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
33	330	C	c	C	G	G	G	G	G	J	J	J	J	J			J	J	J .J	J	J	J	Q	Q Q	J	J	J	J	J	J	J
39	390	c	c	c	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
47	470	С	С		G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
56	560	С	С		G	G	G	G		J	J	J	J	N			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
68	680	C C	С		G	G	G	G		J	J	J	J	N N			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
82 100	820 101	C C	C C		G	G	G	G		J	J	J	J	N N			J	J	J	J	J	J	Q	Q	N N	N	N N	N N	N N	N N	N N
120	121	0	0		G	G	G	0		J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	P	P	P	X
150	151				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	P	P	P	X
180	181				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	Р	Р	Р	х
220	221				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	Р	Р	Р	x
270 330	271 331				G	G	G			J	J	J	J	N N			J	J	J	J	J	J	Q		N N	N N	N N	P P	P	P	X X
390	391				G	G	G				J	ر ا		IN			J				J .J		Q		N	N	N	Р	P	P	X
430	431				G	G	-			J	J	J	J				J	J	J	J	J	J	Q		N	N	N	P	P	P	x
470	471				G	G				J	J	J	J				J	J	J	J	J	J	Q		N	N	N	Р	Р	Р	х
560	561				G	G				J	J	J					J	J	J	J	М	Q	Q		N	N	N	Р	Р	Р	
680	681				G	G	-			J	J	J					J	J	J	J	M	Q	Q		N N	N	N	P	P	P X	
1,000 1,200	102 122				G	G				J	J	J					N	N	N	N	IVI	Q	Q		N	N N	N N	P	P	×	\vdash
1,500	152				G	G				J	J						N	N	N	N					N	N	N	P	P		
2,200	222				G					J	J						М	М	М	М	М	М	М		N	N	N	Р	К	К	
2,700	272				G												М	М	М	М	М	М	М						К	К	
3,300	332				G	<u> </u>			ļ								M	M	M	M	м	м	M						к	к	
3,900 4,700	392 472				G												M P	M P	M P	M P	M P	M P	M P						M	M	\vdash
5,600	562				G		1						-			-	-												M	M	
6,800	682				G																								N	N	
8,200	822				G																								Р	Р	
10,000	103				G																							X	х	х	\vdash
12,000 15,000	123 153																											x x		<u> </u>	\vdash
18,000	183																											X		<u> </u>	\vdash
22,000	223																											X			
27,000	273																											Х			
33,000	333																											х		<u> </u>	\square
39,000 47,000	393 473																													<u> </u>	\vdash
47,000	473 563																													<u> </u>	\vdash
68,000	683																														
82,000	823																														
100,000	104																														\square
САР	CAP Code	25	50	100	25	50	100	200	250	25	50	100	200	250	500	630	25	50	100	200	250	500	630	1000	50	100	200	250	500	630	1000
Case	Size		0402				0603		_			_	0805	_				_		12	06					_		1210			

Letter	А	С	E	G	J	К	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Automotive MLCC - X7R

Capacitance Range

	Size		04	02					0603							08	805							1206						12	210			18	312			22	20		
So	Idering		Reflow	/Wave					Reflow/W	lave						Reflow	v/Wave						Re	flow/Wa	ive					Reflo	w Only				w Only			Reflow	v Only		
(L) Length	mm (in.)		1 ± (0.04 ±					(1.6 ± 0. 0.063 ± 0							2.01 (0.079								3.2 ± 0.2 26 ± 0.0							± 0.2 ± 0.008)			(0.1	± 0.3 177 ± 012)			5.7 1 (0.224			
(W) Width	mm (in.)		0.5 ± (0.02 ±					(0.81 ± 0. 0.032 ± 0.								± 0.2 ± 0.008)							1.6 ± 0.2 063 ± 0.0							± 0.2 ± 0.008)			(0.1	± 0.2 126 ± 008)			5 ± (0.197 ±			
(t) Terminal	mm (in.)		0.25 ± (0.01 ±					(0.35 ± 0 0.014 ± 0							0.5 ± (0.02								0.5 ± 0.2 .02 ± 0.0							± 0.25 ± 0.01)			0.61 (0.0 0.0	± 0.36)24 ±)14)			0.64 ± (0.025 ±			
v	VVDC	6.3V	16V	25V	50V	10V	16V	25\	/ 50V	100\	/ 200V	250V	6.3V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	200V	250V	50V	100V	25V	50V	100V	200V	250V	500V
101	100																<u> </u>									<u> </u>						м	Q						<u> </u>	⊢	
221	220		C	C	C	G	G	G	_	G	G	-																				M	Q								\vdash
271 331	270 330		C C	C C	C C	G	G	G	_	G	G	-	-																			M	Q								
391	330		c	c	c	G	G	G	_	G	_	-																				M	Q								
471	470		c	c	c	G	G	G	_	G	G																					M	Q								
561	560		С	С	С	G	G	G	G	G	G																					м	Q								
681	680		С	С	С	G	G	G	G	G	G																					м	Q								
821	820		С	С	С	G	G	G	G	G	G																					м	Q								
102	1000		С	С	С	G	G	G	_	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	к	к	к	м	Q	к	к						
122	1220		С	С	С	G	G	G	_	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	к	к	к	м	Q	к	к						\square
152	1500		С	С	С	G	G	G	_	G	G	G	-		J	J	J	J	J	J	J	J	J	J	J	J	J	К	к	к	к	м	Q	к	к				<u> </u>		\vdash
182 222	1800		C C	C	С	G	G	G	_	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	к к	к к	к к	к	M	Q	к к	к к						\vdash
272	2200 2700		C	C C	C C	G	G	G	_	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	ĸ	ĸ	ĸ	K K	M	Q	ĸ	ĸ						
332	3300		c	c	c	G	G	G	_	G	_	G			J	J	J	J	J	J	J	J	J	J	J	J	J	ĸ	ĸ	ĸ	ĸ	M	Q	ĸ	K				-	$ \rightarrow$	
392	3900		С	С	С	G	G	G	_	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	к	к	к	к	м	Q	к	к						
472	4700		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	к	к	к	к	м	Q	к	к						
562	5600		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	к	к	к	м	Q	к	к						
682	6800		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	К	к	м	Q	к	К						
822	8200		С	С	С	G	G	G	_	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	к	к	к	м	Q	к	к						
103	Cap 0.01		С	С	С	G	G	G	_	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	к	к	к	м	Q	к	к						\square
123	(uF) 0.012		C			G	G	G	_	G	-		-		J	J	J	N	N	N	J	J	J	J	J	J		к	к	к	к	M	Q	к	к						\vdash
153	0.015		C C			G	G	G	_	G	-				J	J	J	N	N	N N	J	J	J	J	J	J		к к	ĸ	к к	к к	M	Q	к к	к к						
223	0.018		c			G	G	G		G		1	-		J	J	J	N	N	N	J	J	J	J	Q	Q		ĸ	ĸ	ĸ	ĸ	M	Q	ĸ	ĸ						\vdash
273	0.022		c			G	G	G	_	J		1			J	J	J	N	N	N	J	J	J	J	Q	Q		ĸ	ĸ	ĸ	ĸ	M	Q	ĸ	к						
333	0.033		С			G	G	G	_	J		1			J	J	J	N	N	N	J	J	J	J	Q	Q		к	к	к	к	м	Q	к	к						
393	0.039					G	G	G	G	J					J	J	J	N	N	N	J	J	J	J	Q	Q		к	к	к	к	м	Q	к	к						
473	0.047					G	G	G	G	J					J	J	J	N	N	Ν	J	J	J	м	Q	Q		к	к	к	к	м	Q	к	к						
563	0.056					G	G	G	_	J					J	J	J	N			J	J	J	М	Q	Q		к	к	к	м	м	Q	к	к						
683	0.068					G	G	G	_	J		-	-		J	J	J	N			J	J	J	м	Q	Q		к	к	к	м	м	Q	к	к						\square
823	0.082					G	G	G	_	J					J	J	J	N			J	J	J	м	Q	Q		к	к	к	м	Q	Q	к	к				<u> </u>	┝──┤	
104	0.1					G	G	G	_	J	-	-			J	J	J	N			J	J	J	м	Q	Q		K	ĸ	ĸ	м	Q	Q	ĸ	K					⊢ −−	х
124	0.12		\vdash		-	G	J	J		+		-	-		J	J	N N	N			J	J	M	M	Q	Q		к к	к К	к к	P	Q	Q	к к	к к	-			$ \rightarrow$	$ \longrightarrow $	$ \vdash $
224	0.13					G		J		+	+	+		-	M	N	N	N			J	M	M	Q	Q	Q		M	M	M	P	Q	Q	M	M				-+	$ \rightarrow$	
334	0.33									1	1	1	1		N	N	N	N			J	M	P	Q	4	~		P	P	P	Q	z	z	X	X				-+	$ \rightarrow$	-
474	0.47					1	1	1		1	1	1	1		N	N	N	N			M	M	P	Q				P	P	P	Q			x	x				-+	-+	\square
684	0.68					1	1	1		1		1	1		N	N	N	N	1		м	Q	Q	Q		1		Р	Р	Q	х		1	х	х					\rightarrow	\square
105	1	С													N	N	N	N			м	Q	Q	Q				Ρ	Q	Q	Z			х	х		Z	Z	х	х	
155	1.5														N	N	N				Q	Q	Q	Q				Ρ	Q	Z	Z			х	х		Z	Z	Z	Z	
225	2.2						<u> </u>			-	-	<u> </u>			N	N	N				Q	Q	Q	Q				Z	Z	Z	Z		<u> </u>	Z	Z		Z	Z			$ \square$
335	3.3					<u> </u>		-	_			-									Q	Q	Q					X	z	Z	Z			Z			Z	Z	$ \rightarrow$		\vdash
475 106	4.7							+		+			Р	Р							Q	Q	Q					X Z	Z Z	Z	z			Z		z	Z	Z Z		<u> </u>	⊢
226	22						-	+	-	+		+	P	P				-										2	2	2				2		Z	2	2	$ \rightarrow$		$ \vdash $
						L	1	-		1	1	L		L	L	L	L	-	L		L	L		L		L	-		L	L	I		1	1	L	~	L				

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.04)	(0.05)	(0.055)	(0.060)	(0.07)	(0.09)	(0.1)	(0.11)
			PAPER						EMB	OSSED			

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Automotive MLCC - X8R

Capacitance Range

	SIZE			0603			0805		12	06
	Soldering	J		Reflow/Wave			Reflow/Wave		Reflow	/Wave
WVDC	W	VDC	25V	50V	100V	25V	50V	100V	25V	50V
472	pF	4700	G	G	G	J	J	J	J	J
562		5600	G	G	G	J	J	J	J	J
682		6800	G	G	G	J	J	J	J	J
822		8200	G	G	G	J	J	J	J	J
103	uF	0.01	G	G	G	J	J	J	J	J
123		0.012	G	G		J	J	N	J	J
153		0.015	G	G		J	J	N	J	J
183		0.018	G	G		J	J	N	J	J
223		0.022	G	G		J	J	N	J	J
273		0.027	G	G		J	J		J	J
333		0.033	G	G		J	J		J	J
393		0.039	G	G		J	J		J	J
473		0.047	G	G		J	J		J	J
563		0.056	G			N	N		М	М
683		0.068	G			N	N		М	М
823		0.082				N	N		М	М
104		0.1				N	N		М	М
124		0.12				N	N		М	М
154		0.15				N	N		М	М
184		0.18				N			М	М
224		0.22				N			М	М
274		0.27							М	М
334		0.33							М	М
394		0.39							М	М
474		0.47							М	Q
684		0.68							Q	Q
824		0.82							Q	Q
105		1							Q	Q
WVDC		/DC	25V	50V	100V	25V	50V	100V	25V	50V
	SIZE			0603			0805		12	06

Letter	А	C	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.56 (0.022)	0.71	0.90	0.94	1.02	1.27 (0.050)	1.40	1.52	1.78	2.29	2.54	2.79 (0.110)
Inickness	(0.013)	(0.022)	PAPER	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	· /	(0.070) DSSED	(0.090)	(0.100)	(0.110)

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

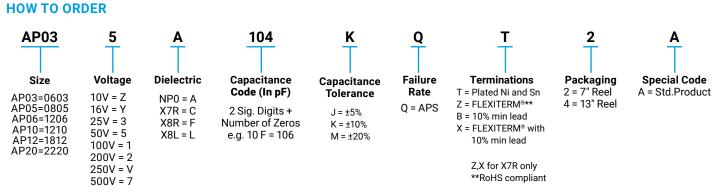
APS for COTS+ High Reliability Applications

General Specifications Surface Mount NP0, X7R and X8R/L MLCCs

KYOCERA AVX's APS COTS+ series of multilayer ceramic capacitors offers the customer a high reliability solution with an ultralow failure rate, <1ppb, in a variety of case sizes and voltages. The APS range encompasses a wide range of dielectric types to meet the customer's requirements from low temperature/voltage capacitance change dielectric, NP0, to high preforming capacitance voltage X7R to high temperature reliability dielectrics, X8R/L.

APS capacitors have a wider capacitance range than MIL spec parts that satisfies the need for higher CV demands and board space saving requirements. Each production lot is extensively tested and removes the requirement for customer specific drawings. The testing regime uses many of the MIL-STD test methods as per MIL-PRF-55681 and has a field failure rate of less than 1 ppb. The APS testing series uses KYOCERA AVX's unique in-house maverick testing detection system that eliminates infant mortality failures.

Applications suitable for APS include Industrial, Telecommunications, Aviation, and Military. The APS is available with a range of different termination finishes, Flexiterm®, Nickel / Tin and Tin with Pb1. Flexiterm® technology delivers improved thermo-mechanical stress resistance.


APS RELIABILITY TEST SUMMARY

- 100% Visual Inspection
- DPA
- IR, DF, Cap, DWV
- Maverick Lot Review
- Thermal Shocl
- 85/85 Testing
- Additional Life Testing
- C of C with every Order
- Quarterly Data Package

FEATURES

- The APS range has been extensively reliability tested as standard resulting in an ultralow failure rate, ≤1ppb
- The APS range is available with Flexiterm[®] that deliver's high thermo-mechanical stress resistance.
- High CV range enabling board space saving requirements.

Dielectric	Temperature/Percentage Cap Change
NP0	-30ppm +30ppm from -55°C + 125°C
X7R	-15% +15% from -55°C to + 125°C
X8R	-15% +15% from -55°C to + 150°C
X8L	-15% +40% from -55°C to + 150°C

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Number.

KINCLERA AWAYC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

APS COTS+ NP0 Series

Capacitance Range

Size	AP	03 = 06	03	AP	05 = 08	05		AF	P06 = 12	06			AP10	= 1210	
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
100 10pF	G	G	G	J	J	J	J	J	J	J	J				
120 12	G	G	G	J	J	J	J	J	J	J	J				
150 15	G	G	G	J	J	J	J	J	J	J	J				
180 18	G	G	G	J	J	J	J	J	J	J					
220 22	G	G	G	J	J	J	J	J	J	J					
270 27	G	G	G	J	J	J	J	J	J	J					
330 33	G	G	G	J	J	J	J	J	J	J					
390 39	G	G	G	J	J	J	J	J	J	J					
470 47	G	G	G	J	J	J	J	J	J	J					
510 51	G	G	G	J	J	J	J	J	J	J					
560 56	G	G	G	J	J	J	J	J	J	J					
680 68	G	G	G	J	J	J	J	J	J	J					
820 82	G	G	G	J	J	J	J	J	J	J					
101 100	G	G	G	J	J	J	J	J	J	J					
121 120	G	G	G	J	J	J	J	J	J	J					
151 150	G	G	G	J	J	J	J	J	J	J					
181 180	G	G	G	J	J	J	J	J	J	J					
221 220	G	G	G	J	J	J	J	J	J	J					
271 270	G	G	G	J	J	J	J	J	J	J					
331 330	G	G	G	J	J	J	J	J	J	J					
391 390	G	G		J	J	J	J	J	J	J					
471 470	G	G		J	J	J	J	J	J	J					
561 560				J	J	J	J	J	J	J					
681 680				J	J	J	J	J	J	J					
821 820				J	J	J	J	J	J	J					
102 1000				J	J	J	J	J	J	J		J	J	J	J
122 1200												J	J	М	М
152 1500												J	J	М	М
182 1800												J	J	М	М
222 2200												J	J	М	M
272 2700													ļ	ļ	
332 3300													ļ	ļ	
392 3900															
472 4700															
103 10nF															
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
Size	AP	03 = 06	03	AP	05 = 08	05		AF	PO6 = 12	06			AP10	= 1210	

Letter	A	С	E	G	J	К	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

TS 16949, ISO 9001Certified

APS COTS+ X7R Series

Capacitance Range

	Size		AP	03 = 06	503			AP	05 = 0	805			1	AP06 =	1206				AP10 :	= 1210)	AP12	= 1812	AP2	20 = 22	220
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
102	Cap 1000	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	К	К	K	К	K	К			
182	(pF) 1800	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	К	K	К	К	K	К			
222	2200	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	К	K	К	K	K	К			
332	3300	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	К	K	К	K	K	K			
472	4700	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	К	K	К	K	K	K			
103	0.01	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
123	0.012	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
153	0.015	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
183	0.018	G	G	G			J	J	J	М		J	J	J	J	J		K	K	К	K	K	K			
223	0.022	G	G	G			J	J	J	М		J	J	J	J	J		K	К	К	К	K	К			
273	0.027	G	G	G			J	J	J	М		J	J	J	J	J		K	K	К	K	K	K			
333	0.033	G	G	G			J	J	J	М		J	J	J	J	J		K	K	К	K	K	К			
473	0.047	G	G	G			J	J	J	М		J	J	J	М	J		K	К	К	К	K	К			
563	0.056	G	G	G			J	J	J	М		J	J	J	М	J		К	K	К	М	К	К			
683	0.068	G	G	G			J	J	J	М		J	J	J	М	J		К	К	К	М	К	К			
823	0.082	G	G	G			J	J	J	М		J	J	J	М	J		K	K	К	М	K	К			
104	0.1	G	G	G			J	J	М	М		J	J	J	М	J		К	К	К	М	К	К			
124	0.12						J	J	М	N		J	J	М	М			К	К	К	Р	К	К			
154	0.15						М	N	М	N		J	J	М	М			К	К	К	Р	К	К			
224	0.22						М	N	М	N		J	М	М	Q			М	М	М	Р	М	М			
334	0.33						N	N	М	N		J	М	Р	Q			Р	Р	Р	Q	X	Х			
474	0.47						N	N	М	N		М	М	Р	Q			Р	Р	Р	Q	X	Х			
684	0.68						N	N	N			М	Q	Q	Q			Р	Р	Q	Х	X	Х			
105	Cap 1.0						Ν	Ν	N*			М	Q	Q	Q*			Р	Q	Q	Z*	Х	Х			
155	(µF) 1.5											Q	Q	Q				Р	Q	Z	Z	Х	Х			
225	2.2											Q	Q	Q				Z	Z	Z	Z*	Z	Z			
335	3.3											Q						Х	Z	Z	Z	Z				
475	4.7											Q						Х	Z	Z		Z*				
106	10																	Z	Z*		L	L			Z	Z*
226	22				1001					1001					1001						1001		1001	Z	-	1001
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V		200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
	Size		AP	03 = 06	503			AP	05 = 0	805				AP06 =	1206				AP10 :	= 1210)	AP12 =	= 1812	AP2	20 = 22	220

*Not currently available with lead plating finish, contact plant for further information.

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
		·	PAPER	°	·		·		FMBO	SSED			

TS 16949, ISO 9001Certified

KYDEERB The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

APS COTS+ X8R/L Series

Capacitance Range

X8R

	SIZE	AP03 =	0603	AP05 :	= 0805	AP06 =	1206
	WVDC	25V	50V	25V	50V	25V	50V
331	Cap 330	G	G	J	J		
471	(pF) 470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
153	(µF) 0.015	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
683	0.068	G		N	N	М	М
104	0.1			N	Ν	М	М
154	0.15			N	Ν	М	М
224	0.22			N		М	М
334	0.33					М	М
474	0.47					М	
684	0.68						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	06	03	08	05	120	6

X8L

	SIZE			AP03 = 0603	3		AP05 = 0	805				AP06	= 1206	
	WVDC		25V	50V	100V	25V	50V		100V	1	6V	25V	50V	100V
331	Сар	330		G	G		J		J					
471	(pF)	470		G	G		J		J					
681		680		G	G		J		J					
102		1000		G	G		J		J					
152		1500		G	G		J		J				J	J
222		2200		G	G		J		J				J	J
332		3300		G	G		J		J				J	J
472		4700		G	G		J		J				J	J
682		6800		G	G		J		J				J	J
103	Сар	0.01		G	G		J		J				J	J
153	(µF) (0.015	G	G		J	J		J				J	J
223	1	0.022	G	G		J	J		J				J	J
333		0.033	G	G		J	J		Ν				J	J
473	1	0.047	G	G		J	J		Ν				J	J
683	(0.068	G	G		J	J						J	J
104		0.1	G	G		J	J						J	М
154		0.15				J	N				J	J	J	Q
224		0.22				N	N				J	J	J	Q
334		0.33				N					J	М	Р	Q
474		0.47				N					M	М	Р	
684		0.68									M			
105		1									М			
	WVDC		25V	50V	100V	25V	50V		100V	1	6V	25V	50V	100V
	SIZE			0603			080	5				12	206	
Let	ter	A	C	E	G	J	К	М		N	Р	Q	X	Y

Ζ

2.79

(0.110)

TS 16949, ISO 9001Certified

Max. Thickness 0.33

(0.013)

0.56

(0.022)

0.71

(0.028)

PAPER

0.90

(0.035)

0.94

(0.037)

1.02

(0.040)

1.27

(0.050)

1.40

(0.055)

1.52

(0.060)

EMBOSSED

1.78

(0.070)

2.29

(0.090)

2.54

(0.100)

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC with FLEXITERM®

General Specifications

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, KYOCERA AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, KYOCERA AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, KYOCERA AVX launched FLEXITERM[®]. FLEXITERM[®] is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM[®], KYOCERA AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM[®] will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test guaranteed
- Increased temperature cycling performance, 3000 cycles and beyond
- Flexible termination system
- Reduction in circuit board flex failures
- Base metal electrode system
- Automotive or commercial grade products available
- AECQ200 Qualified
- Approved to VW 80808 Specification

APPLICATIONS

High Flexure Stress Circuit Boards

· e.g. Depanelization: Components near edges of board.

Variable Temperature Applications

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- · e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- · Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

0805	5	C	104	K	A	Z	2	<u>A</u>
Style 0603 0805 1206 1210 1812 2220	Voltage 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V	Dielectric C = X7R F = X8R	Capacitance Code (In pF) 2 Sig Digits + Number of Zeros e.g., 104 = 100nF	Capacitance Tolerance J = ±5%* K = ±10% M = ±20% *≤1µF only	Failure Rate A=Commercial 4 = Automotive	Terminations Z = FLEXITERM® For FLEXITERM® with Tin/Lead termination see LD Series	Packaging 2 = 7" Reel 4 = 13" Reel	Special Code A = Std.Product

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

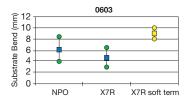
KINCE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

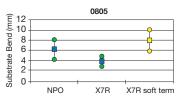
MLCC with FLEXITERM[®] Specifications and Test Methods

PERFORMANCE TESTING

AEC-Q200 Qualification:

- Created by the Automotive Electronics
 Council
- Specification defining stress test qualification for passive components

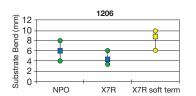

Testing:


Key tests used to compare soft termination to AEC-Q200 qualification:

- Bend Test
- Temperature Cycle Test

BOARD BEND TEST RESULTS

AEC-Q200 Vrs FLEXITERM® Bend Test



1210

X7R

X7R soft term

TABLE SUMMARY

Typical bend test results are shown below:

Style	Conventional Termination	FLEXITERM [®]
0603	>2mm	>5mm
0805	>2mm	>5mm
1206	>2mm	>5mm

TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

Substrate Bend (mm)

12 10

8

6

4

2

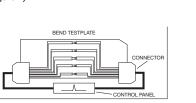
0

NPO

- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- · Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance

Test Ten	perature Profile (1 cycle)
+125º C	
+25º C	ς γ ς
-55° C	

BOARD BEND TEST PROCEDURE

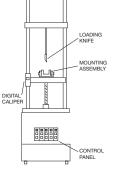

According to AEC-Q200

 Test Procedure as per AEC-Q200:

 Sample size:
 20 components

 Span: 90mm
 Minimum deflection spec: 2 mm

- Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)



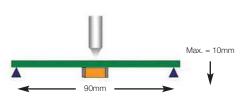
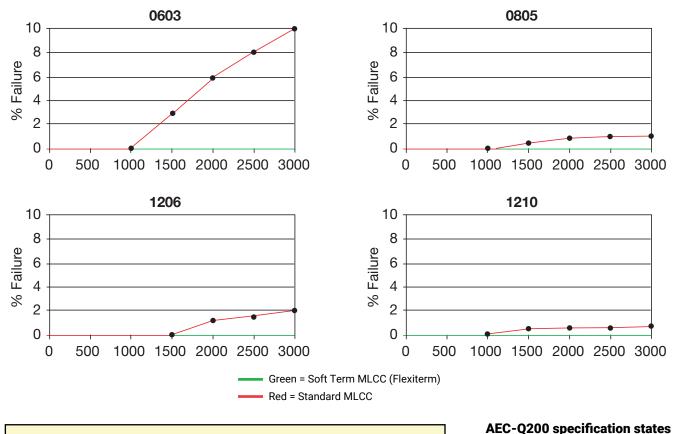

Fig 2 - Board Bend test equipment

Fig 1 - PCB layout with electrical connections

ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

Bend Test

The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:


- The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife

- The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm

KYDECERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

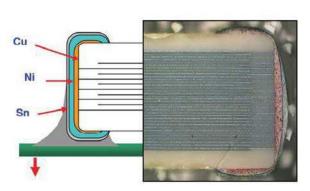
BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS

Soft Term - No Defects up to 3000 cycles

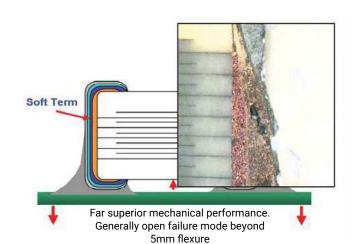
FLEXITERM[®] TEST SUMMARY

 Qualified to AEC-Q200 test/specification with the exception of using 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).

 FLEXITERM® provides improved performance compared to standard termination systems.


WITHOUT SOFT TERMINATION

WITH SOFT TERMINATION


Temperature Cycling:

- 0% Failure up to 3000 cycles

- No ESR change up to 3000 cycle

Major fear is of latent board flex failures.

Board bend test improvement by a factor of 2 to 4 times.

1000 cycles compared to 3000

temperature cycles.

KYDECERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

061120

KY<u>ocera</u>

MLCC with FLEXITERM®

Capacitance Range X8R Dielectric

	SIZE	06	03	08	05	12	06
S	oldering	Reflow		Reflow			//Wave
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G	2.5 V	50 v	251	501
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600 6800	G	G	J	J	J	J
682 822	8200	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
123	(µF) 0.012	G	G	J	J	J	J
153	0.012	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	M	M
683	0.068	G		N	N	M	M
823	0.082			N	N	M	M
104	0.1			N	N	M	M
124	0.12			N	N	M	M
154	0.15		L	N	N	M	M
184 224	0.18			N		M	M
274	0.22		1	N		M	M
334	0.27					M	M
394	0.33					M	171
474	0.39					M	
684	0.47		<u> </u>		<u> </u>	IVI	
824	0.82						1
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	06	03	08	05	12	06

Letter	А	С	E	G	J	К	М	Ν	Р	Q	Х	Y	Z	
Max. Thickness	0.33 (0.013)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)	
	PAPER						EMBOSSED							

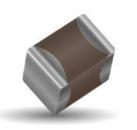
TS 16949, ISO 9001Certified

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC with FLEXITERM®

Capacitance Range X7R Dielectric

	Size			0402					06	03					0	805			1			120	6				12	10		18	12		2220	
	Solderi	na	Refl	ow/V	Vave			R	eflow	/Wave					Reflo	w/Wa	ve		1		Re	eflow/\	Wave				Reflow	v Only	/	Reflov	v Only	Re	flow 0	Inly
	WVDC	2	16V	25V	50V	10V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	500V	16V	25V	50V	100V	50V	100 V	25V	50V	100 V
221	Сар	220	С	С	С											С																		
271	(pF)	270	С	С	С																													
331		330	С	С	C																													
391		390	С	С	C																													
471		470	С	С	С																													
561		560	С	С	C																													
681		680	С	С	C																													
821		820	С	С	C																													
102		1000	С	С	C		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
182		1800	С	С	C		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
222		2200	С	С	C		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
332		3300	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
472		4700	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
103	Сар	0.01	С				G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
123	(µF)	0.012	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
153		0.015	С				G	G	G				J	J	J	Ν	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
183		0.018	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
223		0.022	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
273		0.027	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
333		0.033	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
473		0.047					G	G	G				J	J	J	N	N	N	J	J	J	M	J	J		K	K	K	K	N	N			
563		0.056					G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	M	N	N			
683		0.068					G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	M	N	N			
823		0.082					G	G	G				J	J	J	Ν			J	J	J	M	J	J		K	K	K	M	N	N			
104		0.1	С				G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	M	N	N			
124		0.12											J	J	Ν	N			J	J	M	M				K	K	K	P	N	N			
154		0.15											М	N	N	N			J	J	M	M				K	K	K	P	N	N			
224		0.22				G	J	J	J				М	N	N	N			J	М	М	Q				М	M	M	Р	N	N			
334		0.33											Ν	Ν	Ν	N			J	М	P	Q				Р	P	P	Q	Х	Х			
474		0.47				J	J	J					Ν	Ν	Ν	N			М	M	P	Q				P	P	P	Q	Х	Х			
684		0.68											N	N	N	N			М	Q	Q	Q				Р	Р	Q	Х	Х	Х			
105		1											Ν	N	N	N			М	Q	Q	Q				Р	Q	Q	Z	Х	Х			
155		1.5											Ν	Ν					Q	Q	Q					Р	Q	Z	Z	Х	Х			
225		2.2											Ν	N					Q	Q	Q					Х	Z	Z	Z	Z	Z			
335		3.3																	Q	Q						Х	Z	Z	Z	Z				
475		4.7																	Q	Q						Х	Z	Z	Z	Z				Z
106		10																								Z	Z	Z					Ζ	Z
226		22																														Z		
	WVDC		16V	25V	50V	10V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	500V	16V			100 V	50V	100 V	25V		100 V
	Size			0402					06	03					0	805						120	6				12	10		18	12		2220	


Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z	
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
			PAPER			EMBOSSED								

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

FLEXISAFE MLC Chips

General Specifications and Capacitance Range For Ultra Safety Critical Applications

KYOCERA AVX have developed a range of components specifically for safety critical applications.

Utilizing the award-winning FLEXITERM[™] layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features.

The FLEXITERM[™] layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM[™] layer, the FLEXISAFE range of capacitors has unbeatable safety features. Flexisafe capacitors are qualified in accordance with AEC-Q200 standard. AEC-Q200 detailed qualification data is available on request

HOW TO ORDER

FS05	5	C │	104	K ⊤	Q ⊤	Z ⊤	2 ⊤	A
Size FS03 = 0603 FS05 = 0805 FS06 = 1206 FS10 = 1210	Voltage 16V = Y 25V = 3 50V = 5 100V = 1	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. 10µF =106	Capacitance Tolerance J = ±5% K = ±10% M = ±20%	Failure Rate A = Commercial 4 = Automotive Q = APS	Terminations Z = FLEXITERM™ *X = FLEXITERM™ with 5% min lead *Not RoHS Compliant	Packaging 2 = 7" Reel 4 = 13" Reel	Special Code A = Std.Product

CAPACITANCE RANGE FLEXISAFE X7R

SI	ZE	FS03 = 0603				FS05 :	= 0805		FS	S06 = 120	6	FS10 = 1210			
W١	/DC	16	25	50	100	16	25	50	100	16	25	50	16	25	50
102	1000	G	G	G	G	J	J	J	J	J	J	J			
182	1800	G	G	G	G	J	J	J	J	J	J	J			
222	2200	G	G	G	G	J	J	J	J	J	J	J			
332	3300	G	G	G	G	J	J	J	J	J	J	J			
472	4700	G	G	G	G	J	J	J	J	J	J	J			
682	6800	G	G	G	G	J	J	J	J	J	J	J			
103	0.01	G	G	G	G	J	J	J	J	J	J	J			
123	0.012	G	G	G		J	J	J	J	J	J	J			
153	0.015	G	G	G		J	J	J	J	J	J	J			
183	0.018	G	G	G		J	J	J	J	J	J	J			
223	0.022	G	G	G		Ν	Ν	N	Ν	J	J	J			
273	0.027					Ν	Ν	N	Ν	J	J	J			
333	0.033					Ν	Ν	N	Ν	J	J	J			
473	0.047					Ν	Ν	N	Ν	М	M	М			
563	0.056					Ν	Ν	N	Ν	М	M	М			
683	0.068					Ν	N	N	Ν	М	M	М			
823	0.082					Ν	Ν	N	Ν	М	M	М			
104	0.1					N	Ν	N	Ν	М	М	М			
124	0.12									М	М	М			
154	0.15									М	M	М	Q	Q	Q
224	0.22												Q	Q	Q
334	0.33												Q	Q	Q
474	0.47												Q	Q	Q

Letter	G	J	М	N	Q			
Max. Thickness	0.90 (0.035)	0.94 (0.037)	1.27 (0.050)	1.40 (0.055)	1.78 (0.070)			
	PAF	PER	EMBOSSED					

KYDECERE AWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

BENEFITS OF USING CAPACITOR ARRAYS

KYOCERA AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

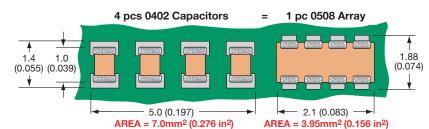
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

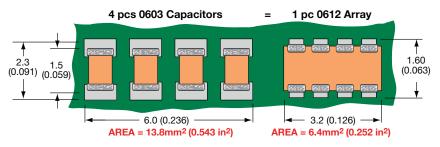
A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

KYOCERa

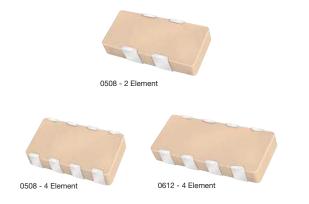
If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

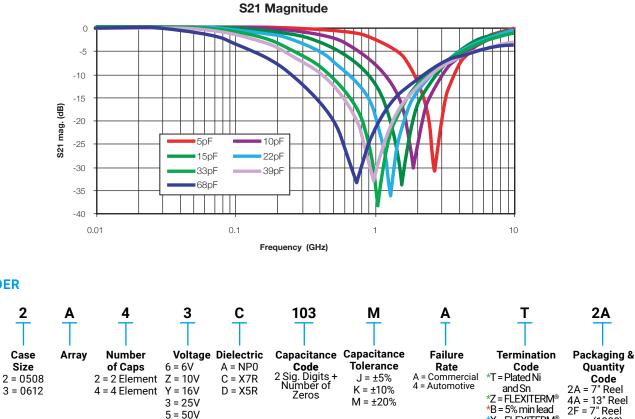
W2A (0508) Capacitor Arrays

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.


W3A (0612) Capacitor Arrays

The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


GENERAL DESCRIPTION

AVX Capacitor Array - W2A41A***K

KYOCERA AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.

KYOCERA AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. KYOCERA AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).

Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

HOW TO ORDER

W

Style

W = ŘoHS

L = SnPb

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

*X = FLEXITERM[®]

with 5% min lead *RoHS Compliant *Not RoHS Compliant (1000)

KYDECERE AWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

1 = 100V

020922

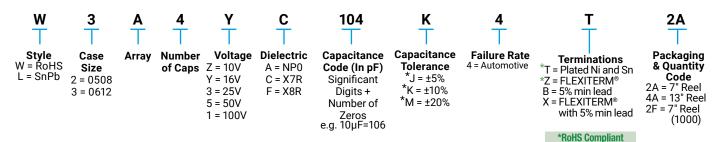
	SIZE		W	2 = 05	08	W	3 = 061	2
# E	lemen	ts		4			4	
	Soldering		Re	flow/Wa	ave	Re	flow/Wa	ve
	ackaqinq			er/Embos			er/Embos	
		mm	1	1.30 ± 0.1	5	1.	60 ± 0.15	0
Length		(in.)	(0.051 ± 0.006)			(0.0	063 ± 0.00)6)
Width		mm (in.)		2.10 ± 0.1 083 ± 0.0			0.20 ± 0.20 126 ± 0.00	
Max.		mm	(0.	0.94	00)	(0.	1.35	,0)
Thickne		(in.)		(0.037)			(0.053)	
	WVDC		16	25	50	16	25	50
1R0	Сар	1.0						
1R2	(pF)	1.2						
1R5		1.5						
1R8 2R2		1.8 2.2						
2RZ 2R7		2.2 2.7						
3R3		3.3						
3R9		3.9						
4R7		4.7						
5R6		5.6						
6R8		6.8						
8R2		8.2						
100		10						
120		12						
150		15						
180		18						
220		22						
270 330		27 33						
330		33 39						
470		47						
560		56						
680		68						
820		82						
101		100						
121		120						
151		150						
181		180						
221		220						
271		270						
331		330						
391 471		390 470						
561		470 560						
681		680						
821		820						
102		1000						
122		1200						
152		1500						
182		1800						
222		2200						
272		2700						
332		3300						
392		3900						
472		4700						
562		5600						
682 822		6800 8200						
822		820U						

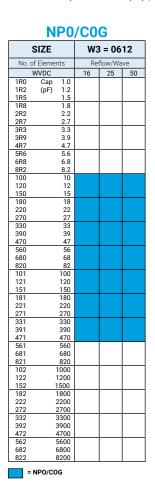
= Supported Values

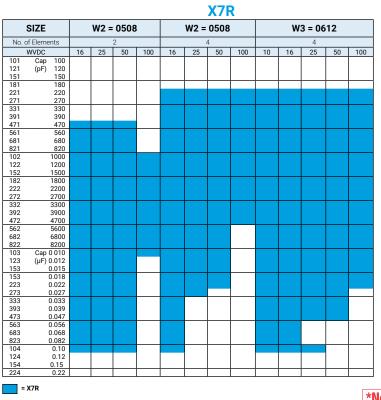
Capacitor Array Capacitance Range – X7R

	SIZE			N2 -	050	0		-	V	12 -	050	0				V3 =	061	2	
#	Elements				2	0					4	0					<u>1001.</u>	2	
n	Soldering				v/Wav	e			F		/Wav	e				Reflow		9	
	Packaqinq			All F	Paper					per/E	mboss				Pa	per/Er	mboss	sed	
Lengt	h mm				± 0.15				(± 0.15					1.60 ±			
	(III.) mm		(± 0.00 ± 0.15				(L		± 0.00 ± 0.15	6)			((0.063 :	± 0.00 ± 0.20	b)	
Width	i (in.)		()		± 0.00				(0		± 0.15	6)			(0).126 :		8)	
Max.	mm			0	.94					0.	94					1.	35		
Thick	ness (in.) WVDC	6	10		037)	50	100	6	10	(0.0)37) 25	50	100	6	10	(0.0)53) 25	50	100
101	Cap 100	0	10	16	25	- 30	100	6	10	16	23	- 50	100	6	10	16	20	- 30	100
121	(PF) 120																		
151	150																		
181 221	180 220																		
271	270																		
331	330																		
391 471	390 470																		
561	560																		
681	680																		
821 102	820																		
122	1200																		
152	1500																		
182 222	1800 2200																		
272	2700																		
332	3300																		
392	3900																		
472 562	4700 5600																		-
682	6800																		
822	8200						<u> </u>												
103 123	Cap 0.010 (µF) 0.012																		
153	0.015																		
183	0.018																		
223 273	0.022 0.027																		
333	0.033																		
393	0.039																		
473 563	0.047																		
683	0.068																		
823	0.082																		
104 124	0.10 0.12	_																	
154	0.12																		
184	0.18																		
224 274	0.22 0.27																		
334	0.27	1																	<u> </u>
474	0.47																		
564	0.56		<u> </u>																<u> </u>
684 824	0.68 0.82																		
105	1.0																		
125	1.2																		
155 185	1.5 1.8																		
225	2.2	1																	
335	3.3	1																	
475	4.7																		
226	22																		
476	47																		
107	100	1																	

Capacitor Array Automotive Capacitor Array (IPC)

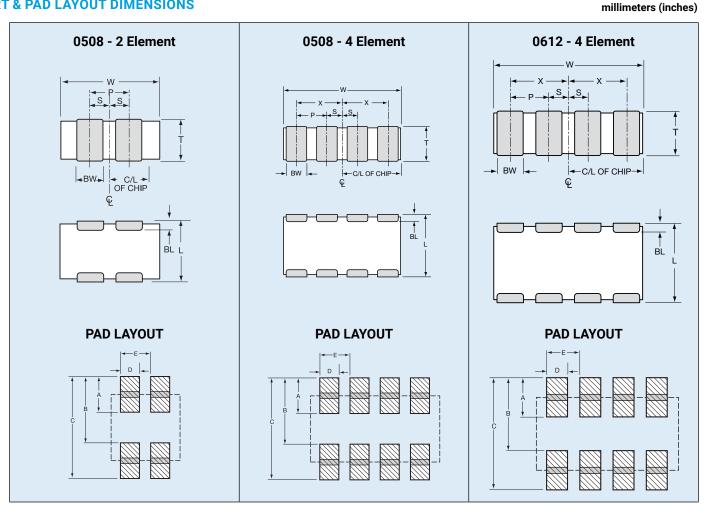



As the market leader in the development and manufacture of capacitor arrays KYOCERA AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the KYOCERA AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.


AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request. All KYOCERA AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

*Contact factory for availability by part number for $K = \pm 10\%$ and $J = \pm 5\%$ tolerance.



For RoHS compliant products,

PART & PAD LAYOUT DIMENSIONS

PART DIMENSIONS

0508 - 2 Element

L	W	Т	BW	BL	Р	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.43 ± 0.10	0.33 ± 0.08	1.00 REF	0.50 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.017±0.004)	(0.013 ± 0.003)	(0.039 REF)	(0.020 ± 0.004)

0508 - 4 Element

L	W	Т	BW	BL	Р	Х	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.010 ± 0.003)	(0.008 ± 0.003)	(0.020 REF)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	w	Т	BW	BL	Р	Х	S
1.60 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10		0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.063 ± 0.008)	(0.126 ± 0.008)	(0.053 MAX)	(0.016 ± 0.004)	(0.007+0.010) -0.003	(0.030 REF)	(0.045±0.004)	(0.015±0.004)

PAD LAYOUT DIMENSIONS

0508 - 2 Element

Α	В	С	D	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

Low Inductance Capacitors

The signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts.

The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages.

An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor's stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL).

The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load.

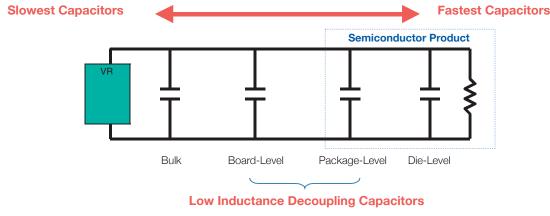


Figure 1 Classic Power Delivery Network (PDN) Architecture

LOW INDUCTANCE CHIP CAPACITORS

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC®) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC® versus a standard MLCC.

INTERDIGITATED CAPACITORS

The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops.

An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICC®s, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC.

KYDECERA AVV/C The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

TDS-SMDMLCC-0026 | Rev 2

Low Inductance Capacitors

Introduction

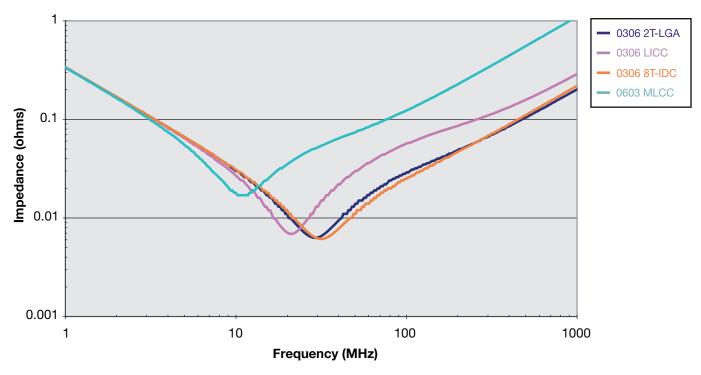
LAND GRID ARRAY (LGA) CAPACITORS

Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by KYOCERA AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance.

The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 0306 8 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC.

LGA technology is also used in a 4 terminal family of products that KYOCERA AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers.

LOW INDUCTANCE CHIP ARRAYS (LICA®)


The LICA® product family is the result of a joint development effort between KYOCERA AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications.

🔇 KYOCERa

LICA® products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9's use LICA®.

LICA[®] products with either Sn/Pb or Pb-free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA[®] devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages.

When high reliability decoupling applications require the very lowest ESL capacitors, $LICA^{\oplus}$ products are the best option.

470 nF 0306 Impedance Comparison

Figure 2 MLCC, LICC®, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).

KUCCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

TDS-SMDMLCC-0026 | Rev 2

Low Inductance Ceramic Capacitors

LICC® (Low Inductance Chip Capacitors) 0204/0306/0508/0612 RoHS Compliant

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC®) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC®.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC® versus a standard MLCC.

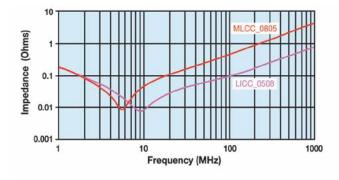
KYOCERA AVX LICC $\ensuremath{\mathbb{B}}$ products are available with a lead-free finish of plated Nickel/Tin.

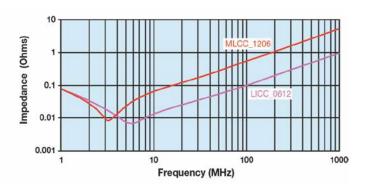
KYOCERa

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%			
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C			
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%			
Voltage Ratings	4, 6.3, 10, 16, 25 VDC			
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max			
Insulation Resistance (@+25°C, RVDC)	100,000M Ω min, or 1,000M Ω per μF min.,whichever is less			

HOW TO ORDER

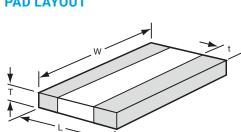

0612	Z	D	105	M	A	<u>T</u>	2	<u>A*</u>
Size 0204 0306 0508 0612	Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V	Dielectric C = X7R D = X5R W = X6S Z = X7S	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance K = ±10% M = ±20%	Failure Rate A = N/A 4 = Automotive**	Terminations T = Plated Ni and Sn	Packaging Available 2 = 7" Reel 4 = 13" Reel	Thickness <u>Thickness</u> mm (in) 0.56 (0.022) 0.76 (0.030) 1.02 (0.040) 1.27 (0.050)


*See the thickness tables on the next page.

**Select voltages for Automotive version, contact factory

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

TYPICAL IMPEDANCE CHARACTERISTICS



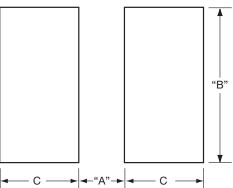
Low Inductance Ceramic Capacitors

LICC[®] (Low Inductance Chip Capacitors)

0204/0306/0508/0612 RoHS Compliant

SIZE 0204 0306 0508 0612 **PHYSICAL DIMENSIONS AND** Packaging Paper 0.50 ± 0.05 Paper/Embossed Paper Paper/Embossed 0.81 + 0.15 **PAD LAYOUT** mm 1.27 + 0.251.60 + 0.25Length (in.) (0.050 ± 0.010) (0.020 ± 0.002) (0.032 ± 0.006) (0.063 ± 0.010) 1.00 ± 0.05 1.60 + 0.15 2.00 + 0.25 3.20 + 0.25 mm Width (in.) (0.040 ± 0.002) (0.063 ± 0.006) (0.080 ± 0.010) (0.126 ± 0.010) Cap WVDC 6.3 10 16 4 4 6.3 10 16 25 6.3 10 16 25 50 6.3 10 16 25 50 Code Cap 0.001 А А 102 А А ν S S s s s А s s v s S s S ν 222 (µF) .0022 А А А S s S S S S S S 332 0.0033 А А А А v v s s s 472 0.0047 А А А А S S S V S S ν s s 682 0.0068 А А А А S S s V S S S V s s S s 103 0.01 А А А А s S v S S v 0.015 А Α s s s s s s s s w 153 А А v А А s S s s s s S 223 0.022 А А S V W 333 0.033 А А A S S S ٧ ٧ S S S s W 473 0.047 Α А А S s s v А s S S S w 0.068 А А A S s S S s s ۷ W 683 А А 104 0.1 Α А K S s А Α s S S W c v A W 154 0.15 А S w S S S S А А S w 0 22 S s s 224 А 0.33 S 334 v Δ s 0.47 v Ķ v 474 S S 684 0.68 А А v v W 105 1 A А А v v А 155 1.5 W W 225 2.2 Α Α 335 3.3 /x 4.7 475 685 6.8 106 10 = X5R |||||| = X7S = X6S Solid = X7R mm (in.) mm (in.) mm (in.) mm (in.) 0204 0306 0508 0612 Code Thickness Code Thickness Code Thickness Code Thickness 0.56 (0.022) 0.56 (0.022) 0.56 (0.022) С 0.35 (0.014) Α 0.76 (0.030) 0.76 (0.030) А 1.02 (0.040) W 1.02 (0.040) 1.27 (0.050) Α

KYOCERa


PHYSICAL DIMENSIONS

			MM (IN.)
Size	L	W	t
0204	0.50 ± 0.05	1.00 ± 0.05	0.18 ± 0.08
0204	(0.020 ± 0.002)	(0.040 ± 0.002)	(0.007 ± 0.003)
0000	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
0306	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
0500	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
0508	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
0612	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
0012	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

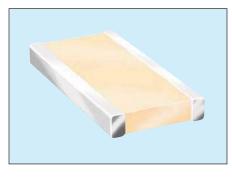
T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

PAD	LAYOUT DIN	MENSIONS	MM (IN.		
Size	Α	В	C]	
0306	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)		
0508	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)		
0612	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)		
0204					

TDS-SMDMLCC-0026 | Rev 2

Low Inductance Capacitors with SnPb Terminations LD15/LD16/LD17/LD18 Tin-Lead Termination "B"

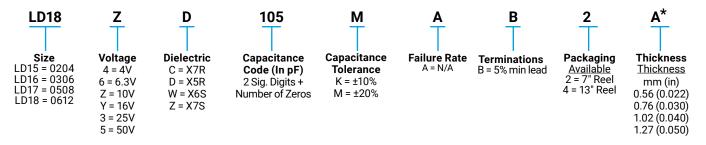

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC®) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC®.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC® versus a standard MLCC.

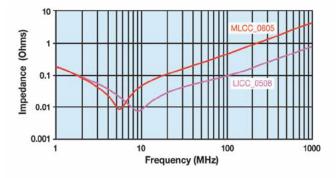
AVX LICC® products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

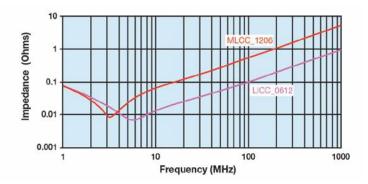


PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less

*Not RoHS Compliant


HOW TO ORDER



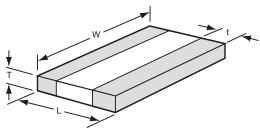
*See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

TYPICAL IMPEDANCE CHARACTERISTICS

KYDCERA AWAC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

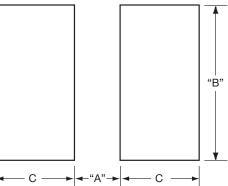
TDS-SMDMLCC-0027 | Rev 2


Low Inductance Capacitors with SnPb Terminations

LD15/LD16/LD17/LD18 Tin-Lead Termination "B"

:	SIZE			015 204)				LD1(030(LD17 0508					LD18 0612		PHYSICAL D PAD LAYOU	
Pa	ickaging mm			per ± 0.05				Pape 81 ± 0.					/Emb 27 ± 0	ossec	ł			/Emb 50 ± 0	ossec	4	PAD LATUU
	(in.)	(0).020 :	± 0.00	2)		(0.0	32 ± 0.	.006)			(0.0	50 ± 0	.010)			(0.06	53 ± 0	.010)		
Width	mm (in.)		: 1.00 : 0.040	± 0.05 ± 0.00				60 ± 0. 63 ± 0.					00 ± 0 30 ± 0					20 ± 0 26 ± 0			
Cap Code	WVDC	4	6.3	10	16	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50	
102	Cap 0.001						Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	V	
222	(µF) .0022						А	Α	Α	A	S	S	S	S	V	S	S	S	S	V	
332	0.0033						А	Α	Α	Α	S	S	S	S	V	S	S	S	S	V	
472	0.0047						А	Α	Α	A	S	S	S	S	V	S	S	S	S	V	
682	0.0068						Α	Α	A	A	S	S	S	S	V	S	S	S	S	V	
103	0.01						Α	A	A	A	S	S	S	S	V	S	S	S	S	V	
153	0.015						A	Α	A	A	S	S	S	S	V	S	S	S	S	W	
223	0.022						A	A	A	A	S	S	S	S	V	S	S	S	S	W	
333	0.033						A	A	A		S	S	S	V	V	S	S	S	S	W	
473 683	0.047						A A	A	A A		S S	S S	S S	V	A	S S	S S	S S	S V	W W	PHYSICAL D
104	0.068	C					A	A A			S	S S	v v	A A	A	S	S S	S S	V	W	Size
154	0.1	INI					A	A	1/1/	1	S	S S	V	A	A	S	S	S	W	W	LD15 0.50
224	0.13						A	A	-		S	s	A			S	s	V	w	**	(0204) (0.020
334	0.33						^	^			V	V	A			S	s	v			LD16 0.81
474	0.47										v		A			S	S	v			(0306) (0.032
684	0.68										A	A				V	V	W			LD17 1.27
105	1					A					A	A				V	V	A			(0508) (0.050
155	1.5										K					W	W				LD18 1.60 (0612) (0.063
225	2.2															А	Α				T - See Range Cha
335	3.3																				I - See Range Cha
475	4.7																				
685	6.8																				PAD LAYOU
106	10																				Size A
																					(0204)
	Solid = X	X7F	2			7 :	= X5	5R		\square	\square	= X	7S				= X	(6S			
					<u> </u>																(0306) 0.31 (0
		(im)				m	m (in.)			r	nm (i	in)				mm	(in)			LD17 0.51 (0
	mm	(in.)						7	Г									(11.)	1		(0508)
	LD15			_		D16		-	_		LD1		_			LD	-				LD18 (0612) 0.76 (0
	(0204)			_		306		-	_		(050	-	_			(06					(0012)
Co	de Thickn	ess		Co		Thick		-	C	code	Thio				Cod	e Th					
C	0.35 (0.0	014)		ŀ	<u>۱</u>	.56 (0).022)		S	0.56	(0.02	22)		S	0.5	6 (0.	022)			
										V	0.76	(0.03	30)		V	0.7	6 (0.	030)			
										А	1.02	(0.04	10)		W	1.0	2 (0.	040)			
															Α	1.2	.7 (0.	050)			
																					— C ——► 🔫 "A'

DIMENSIONS AND Т


PHYSI	CAL DIMENS	SIONS	MM (IN.)									
Size	L	w	t									
LD15	0.50 ± 0.05	1.00 ± 0.05	0.18 ± 0.08									
(0204) (0.020 ± 0.002) (0.040 ± 0.002) (0.007 ± 0.00												
LD16	0.81 ± 0.15 1.60 ± 0.15 0.13 min.											
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)									
LD17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.									
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)									
LD18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.									
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)									
T - See Ra	ange Chart for Thick	mess and Codes										

rt for Thickness and Codes

T DIMENSIONS

Size	Α	В	C
LD15			
(0204)			
LD16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
LD17 (0508)	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
LD18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

MM (IN.)

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

TDS-SMDMLCC-0027 | Rev 2

IDC Low Inductance Capacitors (RoHS) IDC (InterDigitated Capacitors) 0306/0612/0508

GENERAL DESCRIPTION

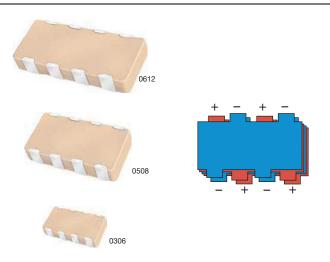
Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.

IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

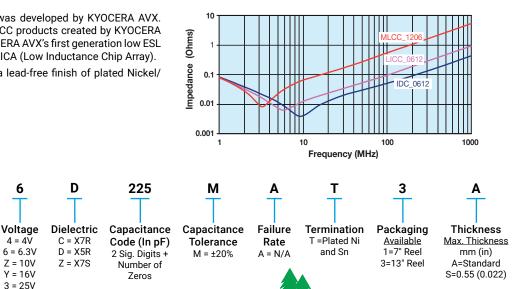
The Inter-Digitated Capacitor (IDC) technology was developed by KYOCERA AVX. This is the second family of Low Inductance MLCC products created by KYOCERA AVX. IDCs are a cost effective alternative to KYOCERA AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).

KYOCERA AVX IDC products are available with a lead-free finish of plated Nickel/ Tin.


1

Number of

Terminals


1 = 8 Termi-

nals

KYOCERa

TYPICAL IMPEDANCE

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

PERFORMANCE CHARACTERISTICS

L

Low

Inductance

HOW TO ORDER

3

IDC Case

Size

2 = 0508

3 = 0612

4 = 0.306

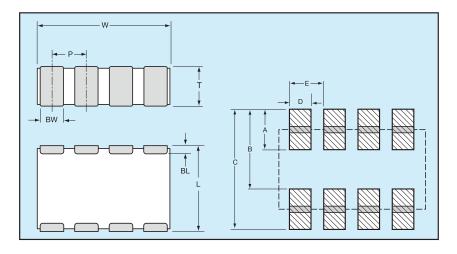
W

Style

Capacitance Tolerance	±20% Preferred						
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C						
Temperature Coefficient	±15% (0VDC), ±22% (X7S)						
Voltage Ratings	4, 6.3, 10, 16, 25 VDC						
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max						
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less						

	072522
Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder

KoHS COMPLIANT


IDC Low Inductance Capacitors (RoHS)

IDC (InterDigitated Capacitors) 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	508		W	3= Tł	nin 06	12		W3	3 = 0	612		W3	= TH	ICK 0	612
Max. mm	0.	55			0.55			0.95					0.55				0.95					1.22			
Thickness (in.)	(0.0)22)	(0.022)			(0.037)					(0.022)				(0.037)					(0.048)					
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (µF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5	i																								
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

	SIZE	w	L	BW	BL	Р
	0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
	0306	(0.063 ± 0.008)	(0.032 ± 0.006	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
	0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
ſ	0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	0612	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DI-MENSIONS

SIZE	Α	В	С	D	Е
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

IDC Low Inductance Capacitors (SnPb) IDC (InterDigitated Capacitors) 0306/0612/0508

GENERAL DESCRIPTION

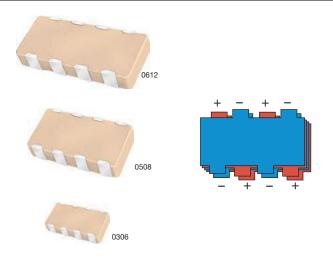
Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.

IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

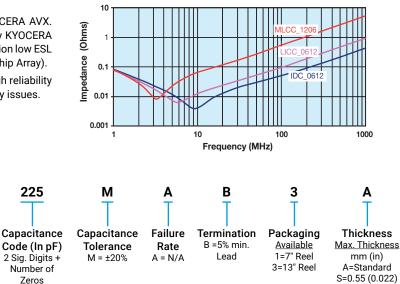
The Inter-Digitated Capacitor (IDC) technology was developed by KYOCERA AVX. This is the second family of Low Inductance MLCC products created by KYOCERA AVX. IDCs are a cost effective alternative to KYOCERA AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).

KYOCERA AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.


1

Number of

Terminals


1 = 8 Termi-

nals

KYOCERa

TYPICAL IMPEDANCE

*Not RoHS Compliant

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

D

Dielectric

C = X7R

D = X5R

Z = X7S

6

Voltage

4 = 4V

6 = 6.3V

Z = 10V

Y = 16V

3 = 25V

PERFORMANCE CHARACTERISTICS

L

Low Inductance

HOW TO ORDER

3

IDC Case

Size

2 = 0508

3 = 0612

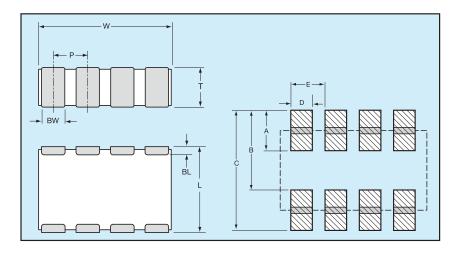
4 = 0306

L

Style

Capacitance Tolerance	±20% Preferred	
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C	
Temperature Coefficient	±15% (0VDC), ±22% (X7S)	
Voltage Ratings	4, 6.3, 10, 16, 25 VDC	
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max	
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less	

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder



IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) with Sn/Pb Termination 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	0508	3	W2 = 0508						3= Tł	nin 06	12	W3 = 0612						W3 = THICK 0612				
Max. mm	0.5	55			0.55.					0.95			0.55				0.95						1.22				
Thickness (in.)					(0.022			(0.037)					(0.022)				(0.037)						(0.048)				
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16		
Cap (μF) 0.010																											
0.022																											
0.033																											
0.047																											
0.068																											
0.10																											
0.22																											
0.33																				_							
0.47																											
0.68																											
1.0																											
1.5																											
2.2																											
3.3																											

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

KYOCERa

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

	SIZE	W	L	BW	BL	Р
	0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
	0306	(0.063 ± 0.008)	(0.032 ± 0.006	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
	0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
Ī	0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DI-MENSIONS

SIZE	Α	В	С	D	Е
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

LGA Low Inductance Capacitors

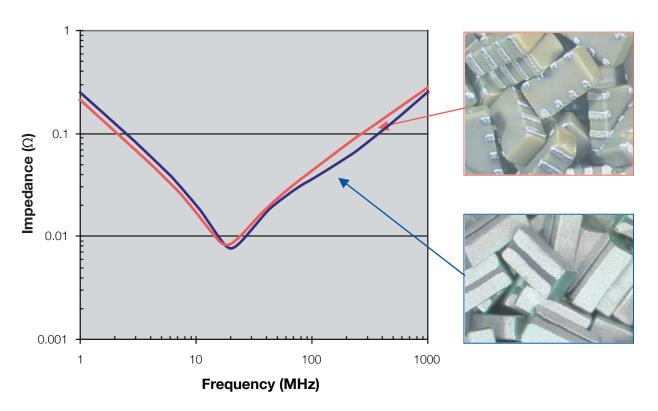
0204/0306 Land Grid Array

Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from KYOCERA AVX. These new LGA products are the third low inductance family developed by KYOCERA AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance.

Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including:

- · Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
- Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
- Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist "tombstoning"
- Better solder joint reliability

APPLICATIONS

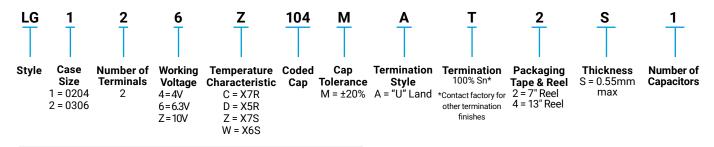

Semiconductor Packages

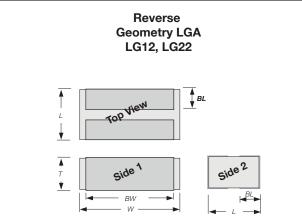
- Microprocessors/CPUs
- Graphics Processors/GPUs
- Chipsets
- FPGAs
- ASICs

Board Level Device Decoupling

- · Frequencies of 300 MHz or more
- · ICs drawing 15W or more
- Low voltages
- · High speed buses

0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC


LGA Low Inductance Capacitors



0204/0306 Land Grid Array

SIZE		L	G12 (0204	l)					LG2	2 (03	306)								
Length mm (in.)	n mm (in.) 0.50 (0.020)									0.76 (0.030)										
Width mm (in.)			1.00 (0	0.039)						1.6	0 (0.0	63)								
Temp. Char.	X5R	R (D)	X75	(Z)	X6S	(W)	Х	7R (C	;)	X5R	(D)	X75	5 (Z)	X6S	(W)					
Working Voltage	6.3	4	6.3	4	6.3	4	10	6.3	4	6.3	4	6.3	4	6.3	4					
	(6)	(4)	(6)	(4)	(6)	(4)	(Z)	(6)	(4)	(6)	(4)	(6)	(4)	(6)	(4)					
Cap (µF) 0.010 (103)																				
0.022 (223)																				
0.047 (473)																				
0.100 (104)																				
0.220 (224)																				
0.330 (334)																				
0.470 (474)																				
1.000 (105)																				
2.200 (225)																				
= X7R = X5R								= X7	S		= X6	δS	•	•						

HOW TO ORDER

PART DIMENSIONS

Series	L	w	BW	BL	
LG12 (0204)	0.5 ± 0.05 (0.020±0.002)	1.00 ± 0.10 (0.039 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	0.8 ± 0.10 (0.031 ± 0.004)	0.13 ± 0.08 (0.005 ± 0.003)
LG22 (0306)	0.76 ± 0.10 (0.030 ± 0.004)	1.60 ± 0.10 (0.063 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	1.50 ±0.10 (0.059 ± 0.004)	0.28 ± 0.08 (0.011 ± 0.003)

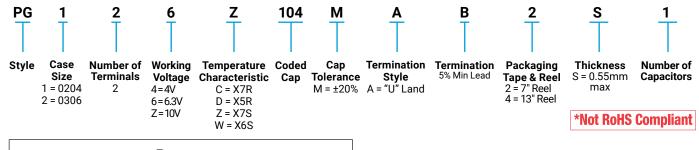
RECOMMENDED SOLDER PAD DIMENSIONS

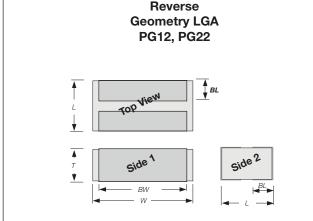
MM (INCHES)

 Series	PL	PW1	G
 LG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
LG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)

MM (INCHES)

KUDEERa The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available


online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


LGA Low Inductance Capacitors

0204/0306 Land Grid Array – Tin/Lead Termination "B"

HOW TO ORDER

PART DIMENSIONS

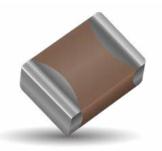
MM (INCHES)

Series	L	w	Т	BW	BL
PG12 (0204)	0.5 ± 0.05 (0.020±0.002)	1.00 ± 0.10 (0.039 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	0.8 ± 0.10 (0.031 ± 0.004)	0.13 ± 0.08 (0.005 ± 0.003)
PG22 (0306)	0.76 ± 0.10 (0.030 ± 0.004)	1.60 ± 0.10 (0.063 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	1.50 ±0.10 (0.059 ± 0.004)	0.28 ± 0.08 (0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS

MM (INCHES)

<u>ال</u>	1	Series	PL	PW1	G
G		PG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
		PG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)
PW1►					


The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

051316

KYOCERa

High Temperature MLCCs AT Series – 200°C & 250°C Rated

Present military specifications, as well as a majority of commercial applications, require a maximum operating temperature of 125°C. However, the emerging market for high temperature electronics demands capacitors operating reliably at temperatures beyond 125°C. KYOCERA AVX's high temperature chip capacitor product line, has been extended with the BME COG chip. All AT chips have verified capabilities of long term operation up to 250°C for applications in both military and commercial businesses. These capacitors demonstrate high volumetric efficiency, high insulation resistance and low ESR/ESL for the most demanding applications, such as "down-hole" oil exploration and aerospace programs.

HOW TO ORDER

<u>AT10</u>	3	Ţ	104	ĸ	A	Ŧ	2	A T
Style	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination	Packaging	Special
AT03 = 0603	Code	Coefficient	(2 significant digits	Tolerance	A = Standard	1 = Pd/Ag	2 = 7" Reel	Code
AT05 = 0805	16V = Y	PME	+ no. of zeros)	J = ±5%		T = 100% Sn Plated	4 = 13" Reel	A = Standard
AT06 = 1206	25V = 3	C0G 250°C = A	101 = 100pF	K = ±10%		(RoHS Compliant)	9 = Bulk	
AT10 = 1210	50V = 5	C0G 200°C = 2	102 = 1nF	M = ±20%		7 = Ni/Au Plated		
AT12 = 1812		VHT 250°C = T	103 = 10nF			(For 250°C BME		
AT14 = 2225		VHT 200°C = 4	104 = 100nF			COG Only)		
		BME	105 = 1µF					
		C0G 250°C = 5						

ELECTRICAL SPECIFICATIONS

Temperature Coefficient

PME C0G 0±30ppm/°C, -55C to 250°C BME C0G 0±30ppm/°C, -55C to 200°C

See TCC Plot for +250°C VHT: T ±15%, -55°C to +150°C

See TCC Plot for +250°C

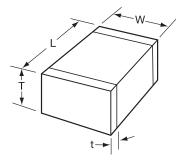
Capacitance Test (MIL-STD-202, Method 305) 25°C, 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Dissipation factor 25°C

C0G: 0.15% Max at 1.0 \pm 0.2 Vrms (open circuit voltage) @ 1kHz VHT: 2.5% Max at 1.0 \pm 0.2 Vrms (open circuit voltage) @ 1kHz

COG 200°C = 3

Insulation Resistance 25°C (MIL-STD-202, Method 302) $100G\Omega$ or $1000M\Omega$ -µF (whichever is less)


Insulation Resistance 125°C (MIL-STD-202, Method 302) $10G\Omega$ or $100M\Omega$ -µF (whichever is less)

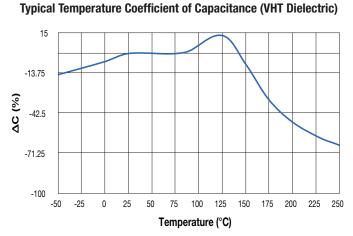
Insulation Resistance 200°C (MIL-STD-202, Method 302) $1G\Omega$ or $10M\Omega$ -µF (whichever is less)

Insulation Resistance 250°C (MIL-STD-202, Method 302) 100M Ω or 1M Ω -µF (whichever is less)

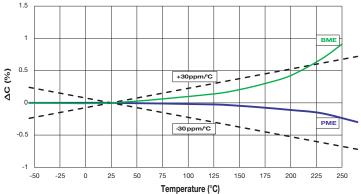
Direct Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50mA max charging current

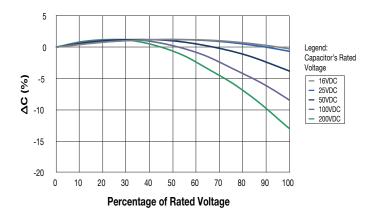
DIMENSIONS:

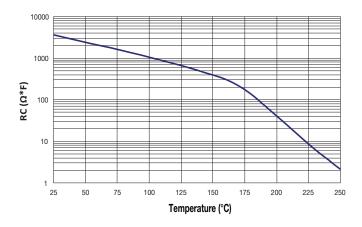
Size	AT03 = 0603	AT05= 0805	AT06=1206	AT10=1210	AT12=1812	AT14=2225
(I) Longth	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	5.72 ± 0.25
(L) Length	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(W) Width	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)
(T) Thickness Max.	1.02	1.30	1.52	1.70	2.54	2.54
(1) THICKNESS Max.	(0.040)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(t) min.	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
terminal max.	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)

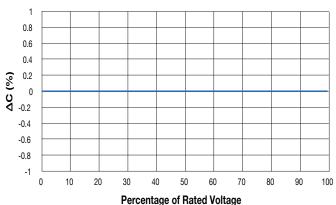

MILLIMETERS (INCHES)

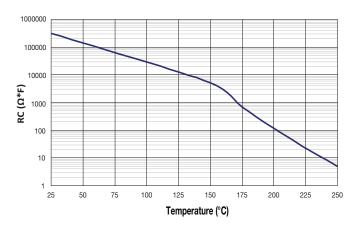
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


080416

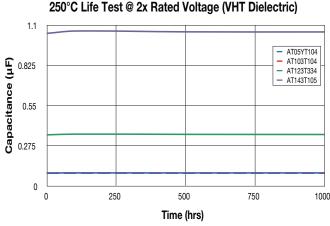

PERFORMANCE CHARACTERISTICS


Typical Temperature Coefficient of Capacitance (COG Dielectric)

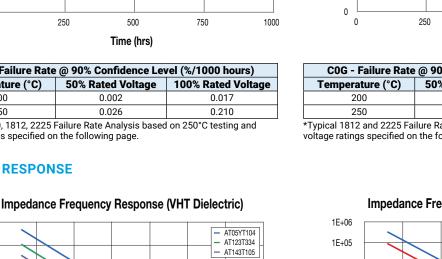

Typical Voltage Coefficient of Capacitance (VHT Dielectric)



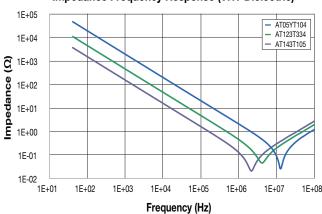
Typical Voltage Coefficient of Capacitance (COG Dielectric)


Typical RC vs Temperature (COG Dielectric)

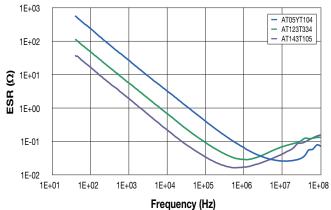
High Temperature MLCC AT Series – 200°C & 250°C Rated

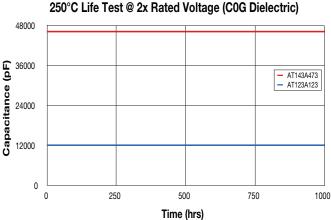


RELIABILITY

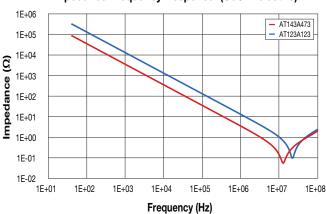


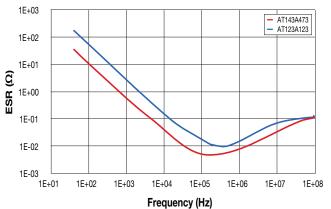
VHT - Failure Rate	@ 90% Confidence Lev	rel (%/1000 hours)									
Temperature (°C)	50% Rated Voltage	100% Rated Voltage									
200	0.002	0.017									
250	0.026	0.210									
Typical 1210, 1812, 2225 Failure Rate Analysis based on 250°C testing and											


voltage ratings specified on the following page.



FREQUENCY RESPONSE




COG - Failure Rate	COG - Failure Rate @ 90% Confidence Level (%/1000 hours)											
Temperature (°C) 50% Rated Voltage 100% Rated Voltage												
200	0.006	0.047										
250	0.074	0.590										

*Typical 1812 and 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

Impedance Frequency Response (COG Dielectric)

ESR Frequency Response (C0G Dielectric)

KYOCERa The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. /ava:

080416

CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

V	ΉТ	Т	emp. Coeff	icient	: 4	200°C	C Rate	d				١	/H1	Г	Temp	. Coefficie	nt: T	250	°C Ra	ted						
	Case S	ize	AT03 =		05 =	AT	06 =	AT1		AT12 =	AT14 =	Γ	Cas	se S		AT03 =	ATO)5 =	AT)6 =		10 =	AT12 =	AT14 =		
			0603		805		206	12		1812	2225					0603		05		06		10	1812	2225		
	Solder		Reflow/Wave				v/Wave ±0.20			Reflow Only	Reflow Only	-	So	Ider		Reflow/Wave			Reflow/Wave 3.20±0.20			v Only ±0.20	Reflow Only	Reflow Only		
(L)	Length	mm (in.)	1.60±0.15 (0.063±0.006)		±0.20 ±0.008)		±0.20 ±0.008)	(0.126	±0.20	4.50±0.30 (0.177±0.012)	5.72±0.25 (0.225±0.010)	(1	.) Lengtl		mm (in.)	1.60±0.15 (0.063±0.006)		±0.20		±0.20 ±0.008)			4.50±0.30 (0.177±0.012)	5.72±0.25 (0.225±0.010)		
		mm	0.81±0.15		±0.000) ±0.20		±0.000) ±0.20	2.50		3.20±0.20	6.35±0.25			- î	mm	0.81±0.15	1.25:			±0.000) ±0.20		±0.000) ±0.20	3.20±0.20	6.35±0.25		
(W)) Width	(in.)	(0.032±0.006)		±0.008)		±0.008)	(0.098		(0.126±0.008)	(0.250±0.010)	0	N) Width		(in.)	(0.032±0.006)				±0.008)		±0.008)		(0.250±0.010)		
m.	Thielencoo	mm	1.02	1.	.30		.52	1.	70	2.54	2.54	0) Thickne		mm	1.02	1.	30	1.	52	1.	70	2.54	2.54		
(1)	Thickness	(in.)	(0.040)		051)		060)	(0.0		(0.100)	(0.100)	(0.100)		855	(in.)	(0.040)	(0.0			060)		067)	(0.100)	(0.100)		
(t) -	Terminal	min	0.25(0.010)		0.010)		(0.010)	0.25(0.25(0.010)	0.25(0.010)	(t) Termir	nal F	min	0.25(0.010)	0.25(0.010)		0.010)	0.25(0.010)	0.25(0.010)		
		max	0.75(0.030)		(0.030)		(0.030)	0.75(<u> </u>	1.02 (0.040)	1.02 (0.040)				<u> </u>		max	0.75(0.030)		0.030)		0.030)	<u> </u>	0.030)	1.02 (0.040)	1.02 (0.040)
	ted Tem		200		00		00	20		200	200		Rated			250	2	50	2	50	2	50	250	250		
	<u>mp. Coel</u> Voltage		4 25	25	4 50	25	4 50	25	1 50	4 50	<u>4</u> 50	-			fficeint e (V)	Т 16	16	25	16	25	16	25	Т 25	<u>Т</u> 25		
	<u> </u>	<u>r í í í í í í í í í í í í í í í í í í í</u>	20	23	50	23	30	25	50	50	50	H		_	. /	10	10	25	10	20	10	20	20	25		
	1000	102											100	-	102											
	1200	122											120	-	122											
	1500	152											150	-	152											
	1800	182											180	-	182											
	2200	222				L	L				\mid		220	-	222						<u> </u>					
Сар	2700	272										ç	ap 270		272						ļ					
(pF)	3300	332										(p	F) 330	-	332											
	3900	392											390	-	392											
	4700	472											470	-	472											
	5600	562											560	-	562											
	6800	682											680	00	682											
	8200	822										L	820	00	822											
	0.010	103											0.01	10	103											
	0.012	123											0.01	12	123											
	0.015	153											0.01	15	153											
	0.018	183											0.01	18	183											
	0.010	223					<u> </u>						0.02	22	223											
		273					<u> </u>						0.02	27	273											
	0.027												0.03	-	333											
	0.033	333					<u> </u>						0.03	-	393											
	0.039	393											0.04	_	473											
	0.047	473											0.05	-	563											
	0.056	563												-	683						<u> </u>					
	0.068	683											0.06													
Con	0.082	823										c	30.0		823						<u> </u>					
(uF)	0.100	104										(μ	F) 0.10	_	104											
1 ⁽¹⁾	0.120	124											0.12	-	124											
	0.150	154											0.15	-	154		L									
	0.180	184											0.18	-	184											
	0.220	224											0.22		224											
	0.270	274		İ	ĺ								0.27	70	274											
	0.330	334		İ –	1								0.33	30	334											
	0.390	394											0.39	90	394											
	0.470			1		1							0.47	70	474											
	0.560												0.56	60	564			ĺ								
	0.500												0.68	-	684											
	0.820												0.82	-	824											
													1.00	-	105											
F.	1.000		05	05	50	05	50	05	50	50	50	F			e (V)	16	16	25	16	25	16	25	25	25		
	Voltage		25	25	50	25	50	25	50	50	50	F	Rated			250		50		50	<u> </u>	50	250	250		
Ra	ted Tem	p. (°C)	200		00		00	20		200	200	H				AT03 =)5 =		06 =		10 =	AT12 =	AT14 =		
	Case S	ize	AT03 =		05 =		06 =	AT1		AT12 =	AT14 =		Cas	se S	Size	0603		05		206		10 -	1812 -	2225		
			0603	08	805	12	206	12	10	1812	2225	L				0003	00	00	1 12		1 12	10	1012	J		

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

BME	CO	G Tem	p. Coefficie	nt: 4 200	0°C Rated			B	ME	E CO	G (Ni/Au) 🛽	emp. Coefficient: 5	250°C Rated
Case Si	ize	AT03=	:0603	AT05	=0805	AT06	=1206		Case	Size	AT03=0603	AT05=0805	AT06 = 1206
Solderi	na	Reflow	/Wave	Reflow	/Wave	Reflow	/Wave		Solde	rina	Reflow/Wave	Reflow/Wave	Reflow/Wave
L) Length	mm	1.60±	0.15	2.01	±0.20	3.20:	±0.20	. —	Length		1.60±0.15	2.01 ± 0.20	3.20±0.20
	(in.)	(0.063±			±0.008)	(0.126:				(in.)	(0.063±0.006)	(0.079±0.008)	(0.126±0.008)
W) Width	mm (;)	0.81 ±		i	±0.20	1.60:		(W)) Width		0.81±0.15	1.25±0.20	1.60±0.20
T) Thickness	(in.) mm	<u>(0.032±</u> 1.0			<u>±0.008)</u> 30		<u>±0.008)</u> 52	(T)		(in.) mm	(0.032±0.006) 1.02	(0.049±0.008) 1.30	(0.063±0.008) 1.52
T) THICKNESS	(in.)	(0.0-			<u>30</u>)51)		<u></u>)60)		ckness		(0.040)	(0.051)	(0.060)
t) Terminal	min	0.25(0			0.010)	0.25((t)		min	0.25(0.010)	0.25(0.010)	0.25(0.010)
	max	0.75(0	.030)	0.75(0.030)	0.75(0.030)	Ter	rminal	max	0.75 (0.030)	0.75(0.030)	0.75 (0.030)
Rated Temp	<u>). (°C)</u>	20	0	2	00	20	00	Ra	ted Ten		250	250	250
Temp. Coeffice		3		:	3	;	3		Tem Coeffic		5	5	5
Voltage		25	50	25	50	25	50		Voltage		25	25	25
Cap 39	390							Сар		390			
p ^{F)} 47	470							(pF)	47	470			
56	560								56	560			
68	680								68	680			
82	820								82	820			
100	101								100	101			
120	121								120	121			
150	151								150				
180	181								180	181			
220	221								220	221			
270	271								270	271			
330	331								330	331			
390	391								390	391			
470	471								470	471			
560	561								560	561			
680 820	681 821								680 820	681 821			
1000	102								1000	1 1			
1200	122								1200	i i			
1500	152								1200	i i			
1800	182								1800	i - i			
2200	222								2200	i i			
2700	272							1	2700	1 1			
3300	332							1	3300	i i			
3900	392							1	3900	392			
4700	472								4700	472			
5600	562								5600	562			
6800	682								6800	682			
8200	822							╎└	8200	822			
Cap 0.010	103							Cap	0.010	<u> </u>		<u> </u>	
0.012	+ +							(µF)	0.012	<u> </u>			
0.015									0.015				
0.018									0.018				
0.022									_	223		+	+
0.027										273			
	<u> </u>								0.033	i i		+	
0.039									0.039	i - i		+	
0.047										563		1	
0.056										683		+	
0.008									0.008	i i		1	1
0.100								1	0.002	<u> </u>		1	
Voltage		25	50	25	50	25	50		Voltag		25	25	25
Rated Temp		200	200	200	200	200	200			np. (°C)	250	250	250
	ize	AT03=		AT05		AT06		1 🗖	Case		AT03=0603	AT05=0805	AT06=1206

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

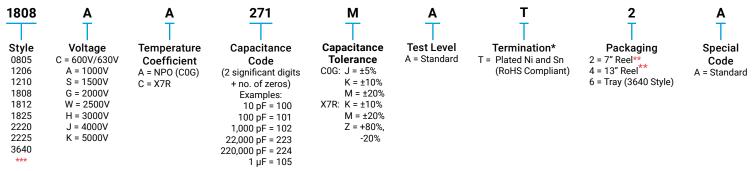
CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

P	ME	E CO	G Temp. C	Coefficient: 2	200°C Rate	ed		P	ME	C 0	G Temp. C	oefficient: A	250°C Rate	ed	
	Case	Size	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225		Case S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225
	Sold	erina	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only		Solder	ina	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only
0.51		mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25		-	mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25
(L) L	.ength	(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)	(L) L	ength.	(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(MA)	Width	mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25	(00)	Width	mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
(**)	muun	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)	(11)	muun	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)
(T) T	Thickne	mm	1.30	1.52	1.70	2.54	2.54	(T) T	hickness	mm	1.30	1.52	1.70	2.54	2.54
(.).		(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)	(.).		(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(t) T	ermina	l min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	(t) T	erminal	min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
<u> </u>		max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)			max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)
		emp. (°C)	200	200	200	200	200		ited Tem		250	250	250	250	250
Ie	•	oefficeint	2	2	2	2	2	le	mp. Coel		A	A	A	A	A
	Volta		50	50	50	50	50		Voltage	<u> </u>	25	25	25	25	25
	10								100	101					
	12	_							120 150	121 151					
	18								180	181					
	22								220	221					
	27								270	271					
	33	_							330	331					
	39	_							390	391					
	47	_							470	471					
	56								560	561					
	68	0 681							680	681					
Cap	82	0 821						Cap	820	821					
Cap (pF)	100	0 102						(pF)	1000	102					
	120	0 122							1200	122					
	150	0 152							1500	152					
	180								1800	182					
	220	_							2200	222					
	270	_							2700	272					
	330								3300	332					
	390								3900	392					
	470								4700	472					
	560	_							5600	562					
	680 820	_							6800 8200	682 822					
	0.01	_						-	0.010	103					
	0.01								0.010	123					
	0.01								0.012	153					
	0.01								0.018	183					
	0.02	_							0.022	223					
	0.02								0.027	273					
Cap (µF)	0.03	33 333						Cap (µF)	0.033	333					
(^m)	0.03							(µ·)	0.039	393					
	0.04	_							0.047	473					
	0.05	_							0.056	563					
1	0.06								0.068	683					
	0.08								0.082	823					
	0.10								0.100						
		ge (V)	50	50	50	50	50		Voltage		25	25	25	25	25
		emp. (°C)		200	200	200	200	Rat	ed Tem	p. (°C)		250	250	250	250
	Case	Size	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225		Case S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

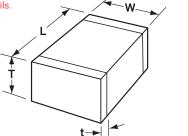
High Voltage MLC Chips For 600V to 5000V Applications


NEW 630V RANGE

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. KYOCERA AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, KYOCERA AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips)


HOW TO ORDER

Notes:

- 1. Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
- 2. *Terminations with 5% minimum lead (Pb) is available, see pages 100 and 101 for LD style. Leaded terminations are available, see pages 102-106.
- **The 3640 Style is not available on Reels.

*** KYOCERA AVX offers nonstandard chip sizes. Contact factory for details.

KOHS COMPLIANT

DIMENSIONS: millimeters (inches)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*	3640*
(I) I an ath	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50	9.14 ± 0.25
(L) Length	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)	(0.360 ± 0.010)
(W) Width	1.25±0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40	10.2 ± 0.25
(vv) width	(0.049 ±0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)	(0.400 ± 0.010)
(t) terminal min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
(i) terminal max.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

*Reflow Soldering Only

NP0 (C0G) DIELECTRIC - PERFORMANCE CHARACTERISTICS

Capacitance Range	10 pF to 0.100 μ F (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case	e Size		0805		1		1206			r		13	210			1			19	308				r			18	12			
	lering	Ref	low/V			Ref	low/W						w Onl	у						w Onl	y						Reflov		,	_	-
(L) Length	mm	2.	10 ± 0	.20		3.3	30 + 0	.30				3.30	+ 0.40)					4.60	+ 0.50)						4.60 +	0.50			
W) Width	(in.) mm		$\frac{85 \pm 0}{25 \pm 0}$			(0.13	<u>30 + 0.</u> +0.30,	012)	_	<u> </u>	(+ 0.01					(+ 0.02				<u> </u>		()).181 +))		
vv) vvidili	(in.)		25 ± 0 49 ± 0		(0	1.00					(+ 0.30					(+ 0.20						((+ 3.20 + 0.126		n		
(t) Terminal	mm		50 + 0				50 + 0		, .,				+ 0.35							+ 0.35							0.75 +				
N/ It.	(in.)		$\frac{20+0}{1000}$		600		4 + 0.		10000	600			+ 0.01		10000	600	1 600			+ 0.01		0000	14000	600	600		030 +			0000	1 4000
Cap (pF)	nge (V) .5 0R5	600	630	1000 C	600	630	1000	1500	2000	600	630	1000	1500	2000	3000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
	1.0 1R0		Â	č																											
	1.2 1R2		Α	C																											
	1.5 1R5	Α	A	С	X	X	X	X	X																						
	1.8 1R8 2.2 2R2	A	A	C C	X	X	X	X	X								С	С		С		0	С								──
	2.7 2RZ	A	A	C	X	Γ χ	X	X	ΓÂ.					<u> </u>			C	C	С		С	C	Ċ								
	3.3 3R3	A	A	C	X	X	X	X	X								C	C	C	C	C	C	C								
	3.9 3R9	Α	Α	С	Х	Х	Х	Х	Х								С	С	С	С	С	С	С								
	4.7 4R7	<u>A</u>	A	C	X	X	X	X	X								C	C	C	C	C	C	C								<u> </u>
	5.6 5R6 6.8 6R8	A	A	C C	X	X	X X	X	X								C C	C C	C C	C C	C C	C C	C C								──
	8.2 8R2	A	A	C	x	Â	X	X	x X					-			C	C	C	C	Ċ	C	Ċ								
	10 100	Â	Â	Č	Ĉ	Ĉ	Ĉ	Ĉ	Ĉ	С	С	С	С	С	F.	С	C	C	C	C	C	C	C	С	С	С	С	С	С	С	E
	12 120	Α	Α	С	Č	C	Ċ	Ċ	C	C	Ċ	C	Ċ	C	F	C	C	С	C	С	C	C	C	C	C	C	С	C	C	C	E
	15 150	A	A	C	C	C	C	C	C	C	C	C	C	C	F	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
	18 180 22 220	A	A	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	F	C C	C C	C C	C C	C C	C C	C C	C E	C C	C C	C C	C C	C C	C C	C C	÷
	27 270	A	A	C			C			C	C					C							E	C	C			F	C	C	E
	33 330	Â	A	C	C	C	C	C	C	C	C	C	C	C	F	C	C	C	C	C	C	C	F	C	С	C	C	F	C	C	E
	39 390	Α	Α	C	C	С	C	C	С	С	C	C	С	С	F	С	С	С	С	С	С	С	F	С	С	С	С	F	С	С	E
	47 470	Α	A	С	С	С	С	С	С	С	С	С	C	С	F	С	С	С	С	С	С	С	F	С	С	С	С	F	С	С	E
	56 560	<u>A</u>	A	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	F	C C	C C	C C	C C	C C	C C	C C		C C	C C	C C	C C	F	C C	C C	F
	68 680 82 820	A X	X	X	C	C	C	C	C		C					C	C		C			C		C	C	C			C	C	F
	100 101	X	X	X	Č	č	Ċ	č	Ċ	C	č	Č	Č	Ċ	F	C	č	Ċ	C	Ċ	F	F		c	C	Č	Ċ	F	C	č	F
	120 121	С	С	С	C	C	C	E	E	С	C	С	C	С	F	С	C	С	С	С	F	F		С	С	C	С	F	С	С	G
	150 151	С	С	С	C	C	С	E	E	C	C	C	E	E	F	С	С	С	F	F	F	F		С	С	С	С	F	С	С	G
	<u>180 181</u> 220 221	C C	C	C C	C C	C C	E	E	<u>الج</u>	C C	C C	E	E	E	F F	C C	C C	C C	F	F	F	F		C C	C C	C C	C C	F	F F	F	<u> </u>
	270 271	<u> </u>	C C	C			E	Ē	Ē	C	C	E	Ē	Ē	G	C	F		F	F	F	F		C	C			F	F	F	<u> </u>
	330 331	C	C	C	Č	Č	E	E	Ē	Č	Č	E	Ē	Ē		C	F	F	F	F	F	F		C	C	C	F	F	F	F	
	390 391	С	С	С	С	С	E	E	E	С	С	E	E	E		С	F	F	F	F	F	F		С	С	С	F	F	F	F	
	470 471	C	C		C	C	E	E	E	C	C	E	E	E		C	F	F	F	F	F	F		C	C	F	F	F	F	F	
	560 561 680 681	C C	C C		C C	C C	E			C C	C C	E	E	E		C C	F		F	F		F		C C	C C	F	F	F	F G	F G	<u> </u>
	750 751	č	Č		Ē	Ē	Ē			C	Č	Ē	Ē	È		C	F	F	F	F				C	C	F	F	F	G	G	
	820 821	С	С		E	E	E			С	С	Е	E	E		С	F	F	E	F				С	С	F	F	F	G	G	
	1000 102		С		E	E	E			С	С	E	F	F		С	F	F	E	F				С	С	F	F	F	G	G	
	1200 122		C C		E	E	E			C	C	E	F	F		C F	F	F	E	F				C	C	F	E F	E			—
	<u>1500</u> 152 1800 182		C		E	E				C C	C C	G	G	G	-	E	F F	F		F				C C	C C	F	G F	F			<u> </u>
	2200 222		C		E	Ē		1		C	C	G				E	F	F					1	C	C	Ē	G	G			<u> </u>
	2700 272				E	E				С	С	G				Е	F	F						С	С	E	G	G			
	3300 332				E	E	<u> </u>			C	C	G				E	F	F						C	C	F	<u> </u>	G			—
	3900 392 4700 472		-	-	E	E			-	C C	C C	G			-	F	F	-		-	-			C C	C C	⊢ G	-				
	5600 562									E	E	<u> </u>			1	E	F		1					C	C	G					1
	6800 682						İ.	İ.		E	Е					F	F							С	С						
	8200 822									F	F						F							E	С						
Cap (µF)	0.010 103 0.012 123									F	F			<u> </u>	-		F							F	F						—
	0.012 123									F G	F G													⊢ G	G	-					
	0.018 183			1		1	1	1				-		1	1				1		1		1	G	G						1
	0.022 223																								F						
	0.027 273																								G						
	0.033 333 0.047 473							-	<u> </u>				<u> </u>	-						<u> </u>					G						
	0.047 473		-				-	-			-			-	-			-													
	0.068 683		1	1		1			1		1	1	1	1	1			1	1	1	1		1			1					1
	0.100 104																														
	nge (V)	600			600	630			2000	600	630			2000	3000	600	630	1000			2500	3000	4000	600	630	1000			2500	3000	4000
Case	e Size	_	0805				1206					12	210						18	308		_					18	12			_

Letter	А	С	E	F	G	Х	7
Max.	0.81	1.45	1.80	2.20	2.80	0.94	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

NOTE: Contact factory for non-specified capacitance values

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

95

NP0 (C0G) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Image: balance Image	Case S	ize				18	25								2220									2225	5								3640)			
Image: 100 mining and the line of the line	Solderi	ing						y																													
Image: 1000 Image: 1000	(L) Length				,			n)																													
Norm Image: <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>J)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>								J)																													
introde image: 1	W) Width				(5)																													
Nome No No<	(t) Terminal	mm																																			
prp 1 <th1< th=""> 1 1 1</th1<>				1 100					10000	1	100		1000					1.000				1.000				1				1	1.000						500
intende intende <t< td=""><td></td><td></td><td>600</td><td>630</td><td>1000</td><td>1500</td><td>2000</td><td>2500</td><td>3000</td><td>4000</td><td>600</td><td>630</td><td>1000</td><td>1500</td><td>2000</td><td>2500</td><td>3000</td><td>4000</td><td>5000</td><td>600</td><td>630</td><td>1000</td><td>1500</td><td>2000</td><td>2500</td><td>3000</td><td>4000</td><td>5000</td><td>600</td><td>630</td><td>1000</td><td>1500</td><td>2000</td><td>2500</td><td>3000</td><td>4000</td><td>500</td></t<>			600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	500
1 1																																					
3.3 300 3	2	.2 2R2																																			
3.90 3.00																																				<u> </u>	<u> </u>
4.40° 1 <th1< th=""> <th1< th=""></th1<></th1<>																		-														-				⊢	-
a. bit bit<																						<u> </u>														<u> </u>	
ab b																																					
int i																																				<u> </u>	<u> </u>
1 1			F	F	G	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			<u> </u>	-				├──	-
15 15 16 6 7 7 6					_				F																	_		F								<u> </u>	F
1 2 0 6 6 6 7 6 7 <td>1</td> <td>15 150</td> <td></td> <td>Е</td> <td>G</td> <td>Е</td> <td>F</td> <td>Е</td> <td>_</td> <td></td> <td>Е</td> <td>Е</td> <td>Е</td> <td>Е</td> <td>Е</td> <td>Е</td> <td>Е</td> <td>E</td> <td>Е</td> <td>Е</td> <td>Е</td> <td>E</td> <td>E</td> <td>Е</td> <td>Е</td> <td>Е</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	15 150		Е	G	Е	F	Е	_		Е	Е	Е	Е	Е	Е	Е	E	Е	Е	Е	E	E	Е	Е	Е	F										
1 2 6 6 6 7 7 6 7 7 7 6 7 <th7< th=""> <th7< th=""> <th7< th=""> <</th7<></th7<></th7<>				_	_		_	_		<u> </u>				_			_	_	_	_		_		_	_	_										\vdash	\vdash
333 330 5 6 6 7 7 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>├──</td> <td>-</td>							_		_									_				_								-		-	-			├──	-
390 5 6 6 6 F							_		_													_		_							-		-				\vdash
Sol E E 0 F	3	39 390	Е		G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	_	Е	Е	Е	Е	Е	Е		Е	F	F									
i i			_	_	_		_	_	_								_	_								_		_								\vdash	G
100 1				_			_	_	_		_				_		_		_	_		_		_	_	_	_					-				├	G
100 100 <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td>			_	_	_		_		_									_				_			_												G
150 150 15 6 6 6 F 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td>F</td> <td>F</td> <td>E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>E</td> <td>E</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td>							F		F	F	E							_	E	E		_					G					G	G	G	G	G	G
191 E							_													_		_		_													G
202 21 e									_										_	_		_										_					G
270 271 E E C F F E <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td>			_				_		_		_							_	_	_								_									G
393 8 8 6 6 7			_				_		_	_	_									_																	G
470 47 E E 6 F F F E									_	F																											G
Sob S																																					G
60 61 6																						_															G
1000 1000			_				_		G				_		_							_		_								_					G
1000 102 1 E F <th< td=""><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td>_</td><td>G</td></th<>				_	_		_	_							_		_					_		_	_								_	_		_	G
120 122 E 6 6 E E E E F <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td>6</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>G</td>					_		_													_		_			_				6		6		_				G
1500 152 E E 6 6 6 E E F 6 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>-</td>					_		_		_		_		_									_		_						_		_					-
220 222 E E G <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																								_						_							
270 272 E E G G E E E E G <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>G</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>G</td> <td>G</td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td>				_				G							_	G	G							_	G	G				_	_	_	_				
3300 332 E E G <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td>├──</td> <td></td>				_	_		_		_				_		_					_		_						<u> </u>		_		_	_			├──	
3900 392 E E G <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>0</td> <td>-</td> <td></td>				_	_				0					_								_							_	_	_	_	_	_	0	-	
5600 562 F F G <td></td> <td></td> <td></td> <td>_</td> <td>G</td> <td>G</td> <td>G</td> <td></td> <td></td> <td></td> <td>Е</td> <td>E</td> <td>Е</td> <td>G</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td>Е</td> <td>Е</td> <td>E</td> <td>G</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>G</td> <td>G</td> <td>_</td> <td>G</td> <td>G</td> <td></td> <td></td> <td></td>				_	G	G	G				Е	E	Е	G	G					Е	Е	E	G	G					G	G	G	_	G	G			
6800 680 F G <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td><u> </u></td> <td></td>					_		_																	_						_	_	_	_			<u> </u>	
8200 820 F F G <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>G</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>G</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td>$\left - \right$</td> <td>├</td> <td>-</td>					_	G			-					G	G							_		_						_	_				$\left - \right $	├	-
pp (µF) 0.010 103 F F G I				_		-	_	-		-				-				1									-	-			_	_				-	\vdash
0.015 153 F F I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>	Cap (µF) 0.01	10 103	F	_	G						7	7	7							G	G								G	G	G						
0.018 183 F F I </td <td></td> <td></td> <td></td> <td></td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td><u> </u></td> <td><u> </u></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>G</td> <td></td> <td></td> <td></td> <td>\square</td> <td>\vdash</td> <td>\vdash</td>					G											<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>							G	G				\square	\vdash	\vdash
0.022 223 F F I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>									-													-		-						G	G	-		-	$\left \right $	├──	\vdash
0.027 273 F F I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>																		1																		<u> </u>	\vdash
0.039 393 6 </td <td></td> <td>27 273</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		27 273	F																																		
0.047 473 6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td><u> </u></td> <td> </td> <td></td> <td></td> <td></td> <td> </td> <td><u> </u></td> <td> </td> <td><u> </u></td> <td></td> <td> </td> <td>G</td> <td>G</td> <td></td> <td> </td> <td><u> </u></td> <td></td> <td><u> </u></td> <td> </td> <td></td> <td>G</td> <td>G</td> <td></td> <td>-</td> <td></td> <td><u> </u></td> <td></td> <td>⊢</td> <td>-</td>									<u> </u>						<u> </u>		<u> </u>			G	G			<u> </u>		<u> </u>			G	G		-		<u> </u>		⊢	-
0.056 563 G </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>+</td> <td></td> <td>G</td> <td>G</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>G</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>├──</td> <td>\vdash</td>					-		-		-						-		-	+		G	G	-		-					G	G	-	-	-	-		├──	\vdash
0.068 68 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																																					
Voltage (V) 600 630 1000 1500 2000 2500 3000 4000 600 630 1000 1500 2000 2500 3000 4000 500 600 630 1000 1500 2000 2500 3000 4000 500 600 630 1000 1500 2000 2500 3000 4000 500 600 630 1000 1500 2000 2500 3000 4000 500 600 630 1000 1500 2000 2500 3000 4000 500 600 630 1000 1500 2000 2500 3000 4000 500 600 630 1000 1500 2000 2500 3000 4000 500 600 630 1000 1500 2000				G																G	G																
Case Size 1825 2220 2225 3640 Letter A C E F G X 7 Max. 0.81 1.45 1.80 2.20 2.80 0.94 3.30				620	1000	1500	2000	2500	2000	4000	600	620	1000	1500	2000	2500	2000	4000	5000	600	620	1000	1500	2000	2500	2000	4000	5000	600	620	1000	1500	2000	2500	2000	4000	500
Letter A C E F G X 7 Max. 0.81 1.45 1.80 2.20 2.80 0.94 3.30			000	030	1000		_	2300	1000	4000	000	030	1000	1300			13000	14000	0000	000	030	1000	1300			1000	4000	1000	000	030	11000	1300	_	_	13000	+000	300
Max. 0.81 1.45 1.80 2.20 2.80 0.94 3.30	0400 0			-																								-			_		0040			_	-
Max. 0.81 1.45 1.80 2.20 2.80 0.94 3.30	Letter		А		С		E		F			3		Х		7			NC	DTE: (Cont	act fa	actor	y for	non-	spec	ified	capa	acita	nce v	/alue	s					
	Max.		D.81		1.45		1.80				2.	80).94		3.30																					

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE – PREFERRED SIZES ARE SHADED

Case Siz	0	1	0805				1206					1210						19	08				1812 Reflow Only 4.60 ± 0.50 (0.181 ± 0.020) 3.20 ± 0.30							
Solderin		Ref	low/W			Ref	low/W	ave				flow 0						Reflo												
(L) Length	mm	2.	10 ± 0.	20		3.	30 ± 0.	30			3.	30 ± 0.	40					4.60	± 0.50							4.60 :	± 0.50			-
	<u>(in.)</u> mm		85 ± 0. 25 ± 0.				30 ± 0. +0.30/					<u>30 ± 0.</u> 50 ± 0.					(<u>± 0.020</u> ± 0.20))		
W) Width	(in.)	(0.0	49 ± 0.	20 008)	(0.063	+0.012	/-0.004	1)			98 ± 0.					(0.079	± 0.20 ± 0.008)							± 0.30 ± 0.012)		
(t) Terminal	mm		50 ± 0.				60 ± 0.					75 ± 0.							± 0.35	`						0.75:		、 、		
Voltage (\	max V)	600	20 ± 0.	1000	600		24 ± 0. 1000		2000	600		<u>30 ± 0.</u> 1000	1500	2000	600	630			± 0.014 2000		3000	4000	600	630	1000		± 0.014		3000	4000
Cap (pF) 100		X	X	C	C	C	E	E	E	E	E	E	E	E																
120	121	Х	Х	С	С	С	Е	Е	E	E	Е	Е	E	Е																1
150	151	Х	Х	С	С	С	Е	Е	E	E	Е	Е	E	Е																
180	181	Х	Х	С	С	С	Е	Е	E	E	Е	Е	E	E																1
220	221	Х	Х	С	С	С	Е	Е	E	Е	Е	Е	E	Е																
270	271	Х	Х	С	С	С	Е	Е	E	E	Е	Е	E	E									Е	Е	Е	Е	Е			
330	331	Х	Х	С	С	С	Е	Е	E	E	Е	Е	E	E	E	Е	Е	Е	Е	Е	F		Е	E	Е	E	E			
390	391	Х	Х	С	С	С	Е	Е	E	E	Е	Е	E	E	E	Е	Е	E	E	E	F		Е	E	Е	E	E			
470	471	Х	Х	С	С	С	Е	Е	E	E	Е	Е	E	E	E	Е	Е	E	E	E	F		Е	E	Е	E	E	E	Е	
560	561	Х	Х	С	С	С	Е	Е	E	E	Е	Е	E	E	E	E	Е	E	E	F	F		Е	E	Е	E	E	E	Е	
680		Х	Х	С	С	С	Е	Е	E	Е	Е	Е	E	Е	Е	Е	Е	E	Е	F	F		Е	E	E	E	Е	F	F	
750) 751	Х	Х	С	С	С	Е	Е	E	E	Е	Е	E	Е	E	Е	E	E	E	F	F		Е	E	Е	E	E	F	F	
820		Х	Х	С	С	С	Е	E	E	E	E	Е	E	E	E	E	Е	E	E	F	F		E	E	E	E	E	F	F	
1000) 102	Х	Х	Х	С	С	Е	E	Е	E	Е	Е	Е	Е	E	E	Е	Е	E	F	F		E	Е	Е	Е	Е	F	F	
1200			Х	Х	С	С	Е	E	E	E	Е	E	Е	Е	E	E	Е	Е	E	F	F		F	F	F	F	F	F	F	
1500	152	Х	Х	Х	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	
1800			Х	С	С	С	Е	E	E	E	E	E	E	E	E	E	E	Е	E	F	F		F	F	F	F	F	G	G	
2200	222	Х	Х	Х	С	С	E	E	E	E	E	E	F	E	E	E	E	F	F	F			F	F	F	F	F	G	G	
2700	272		С		С	С	E	E		E	E	E	F	E	E	E	E	F	F				F	F	F	F	F	G	G	
3300		_	С		С	С	E			E	E	E	F	E	E	E	E	F	F				F	F	F	F	F	G	G	
3900	-		С		С	С	E			E	E	E	F		E	E	Е	F					F	F	F	F	F	G	G	
4700			С		С	С	E			E	E	E	F		E	E	E	F					F	F	F	F	F	G	G	
5600		С	С		С	С	E			E	E	E	F		E	E	E	F					F	F	F	G	G	G		\vdash
6800			С		С	С	E			E	E	E			E	E	E	F					F	F	F	G	G			
8200		С	С		С	С	E			E	E	E			E	E	E						F	F	F	G	G			<u> </u>
Cap(µF) 0.010		С	С		С	С	E			E	E	E			E	E	E						F	F	F	G	G			_
0.015		_	С		E	E	E			E	E	E			F	F	F						F	F	F	G				<u> </u>
0.018			С		E	E				E	E	E			F	F	F						F	F	G					<u> </u>
0.022		С	С		E	E				E	E	F			F	F	F						F	F	G					<u> </u>
0.027					E	E				E	E				F	F							F	F	G					—
0.033					E	E			<u> </u>	E	E	<u> </u>			F	F							F	F	G	<u> </u>	<u> </u>			—
0.039										E	E				F	F							F	F	G G	-				──
0.047										F	F				F	F						-	F	F	6					—
0.056										F	F				F	F							F	F						—
0.088									<u> </u>	F	F				F								F	F	<u> </u>					┼──
0.082										F	F												F	F						+
0.100																							G	G						+
0.150														-				-				-	G	G						+
0.220				-									-											-		-				+
0.270																														+
0.390									<u> </u>															<u> </u>						+
0.390	-																													1
0.560				<u> </u>					-				<u> </u>	-				-						-		<u> </u>	-			1
0.500			1																											1
0.820																														+
1.000			1																											1
Voltage (\		600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case Siz		1	0805				1206					1210							08						•	18				-

Letter	А	С	E	F	G	Х	7
Max.	0.81	1.45	1.80	2.20	2.80	0.94	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

NOTE: Contact factory for non-specified capacitance values

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

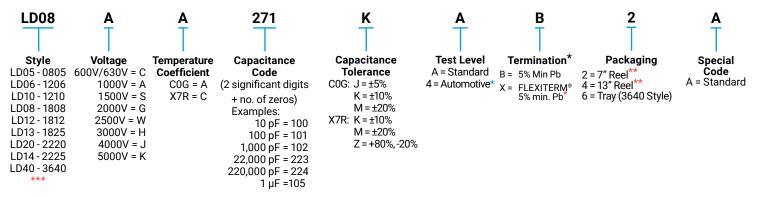
Case Size					25								2220									2225	-								3640				
Soldering				Reflow									low 0									flow C									eflow (
(L) Length (in)					± 0.50								'0 ± 0.									70±0									14 ± 0				
(in.)			((0.181	± 0.02 ± 0.40				-				4 ± 0.		_							24 ± 0 30 ± 0									60 ± 0				
W) Width (in.)			((0.30 : : 0.248 :									0 ± 0. 7 ± 0.									30 ± 0 48 ± 0									J.2 ± 0 00 ± 0				
(t) Terminal mm				0.75	± 0.35				1			0.8	5 ± 0.	35							0.	85 ± 0	.35							0.	76 (0.0)30)			
IIIdA	600	620		0.030 :			12000	14000	600	620	1000		3 ± 0.		2000	4000	5000	600	620	1000		33 ± 0		2000	4000	5000	(00	(20	1000	1.	52 (0.0)60)	10000	4000	5000
Voltage (V) Cap (pF) 100 101	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
120 121						-	-	-	-																										
150 151						-			-																										
130 131			1	1		-																													
220 221						-																													
270 271						1																													
330 331						1																													
390 391						1																													
470 471							-	-																											├──
560 561							-	-	-																										├──
680 681							-	-	-																										├──
							-	-	-																										├──
750 751 820 821		-			-		+	+	-				-									-							-			-			<u> </u>
1000 102	E	F	F	F	F	F	F	-	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	_	G	G	G	G	G	G
1200 122	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G		G			G	G	G	G
1500 152																		F				_		· ·			_	G	G	G	G	_			_
1800 182	F	F	F	F	F	F	F	_	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2200 222	F	F	F		F	F	F		F	F	F	_	F	F	G			F	F	F	_	F	F	F			G	G	G	G	G	G	G	G	G
2700 272	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3300 332	F	F	F	F	F	F	F		F	F	F	F	F	F	G G			F	F	F	F	F	F	F			G G	G	G G	G G	G G	G G	G G	G G	G
	F					_	_					_						F			F	_		F				G							<u> </u>
4700 472	F	F	F	F	F	F	F		F	F	F	F	F	F	G G			F	F	F	F	F	F	F			G G	G	G G	G	G G	G G	G G	G	<u> </u>
5600 562	F		-	-			<u> </u>		F	<u> </u>		F						F	F	F		<u> </u>		· ·				G	_	G				G	<u> </u>
6800 682 8200 822	F	F	F	G G	G G	G G	G		F	F	F	G	F G	G G	G G			F	F	F	F	F	G	G G			G G	G G	G G	G G	G G	G G	G G	G	┝──
	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		┝──
Cap (µF) 0.010 103 0.015 153	F	F	F	G	G	G	0		F	F	F	G	G	G	6			F	F	F	G	G	G	G			G	G	G	G	G	G	G		├
0.018 183	F	F	F	G	G	6			F	F	F	G	G	G				F	F	F	G	G	G	6			G	G	G	G	G	G	G		├
0.022 223	F	F	F	G	G				F	F	F	G	G	0				F	F	F	G	G	G				G	G	G	G	G	G	0		
	F	F	F	G	6				F	F	F	G	G					F	F	F	G	G	6				G	G	G	G	G	6			├
0.027 273	F	F	F						F	F			6					F	F	F	_	_	-						_		6				├
0.033 333	F	F	F	G G					F	F	F	G						F	F	F	G G	G					G G	G	G G	G G					├
0.039 393		_																	F	· ·	_							G	_						├
0.047 473	F	F	F	P G					F	F	F	G						F	F	F	G G						G G	G G	G G	G G					├
	F			6					F			6						F	F	F															├
0.068 683	F	F	G G				+	+	F	F	G G	<u> </u>						F	F	G	G		-				G G	G G	G	G					├──
0.100 104	F	F	G		-		+	+	F	F	G	<u> </u>	-					F	F	G	-	-					G	G	-						├──
0.100 104	F	F			-		+	+	F	F	G		-					F	F	G	-	-					G	G	-						├──
0.150 154	F	F			-		+	+	F	F	G		-			-		F	F	0		-					G	G	-						├──
0.220 224	F	F							F	F						$\left \right $		F	F								G	G	-						├──
0.270 274	F	F							F	F						$\left \right $		F	F								G	G	-						├──
0.330 334	- F	F							F	F						$\left \right $		F	F								G	G	-						├──
0.390 394	F	F					+	+	F	F						$\left \right $		F	F								G	G	-						├──
0.560 564	G	G					+	+	G	G						$\left \right $		F	F								G	G	-						├──
0.680 684	3	-					+	+	G	G	-	-				$\left \right $		G	F G		<u> </u>		<u> </u>				0	3					<u> </u>		├
		<u> </u>					+	+	0	0								G	G		<u> </u>		<u> </u>		-			-	-		<u> </u>	<u> </u>	<u> </u>		├──
0.820 824							+	+										6	6		-		-												
Voltage (V)	600	620	1000	1500	2000	2500	3000	4000	600	620	1000	1500	2000	2500	3000	4000	5000	600	620	1000	1500	2000	2500	3000	4000	5000	600	620	1000	1500	2000	2500	3000	4000	5000
Case Size	000	030	1000	·	2000 25	2300	10000	14000	000	030	1000		22000 2220		3000	-1000	5000	000	030	1000	1300	22000		3000	-+000	3000	300		1000	1300			3000	-1000	3000
Case Size				18	23								~~~~0		_							2223	,				3640								

Letter	A	С	E	F	G	Х	7
Max.	0.81	1.45	1.80	2.20	2.80	0.94	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

NOTE: Contact factory for non-specified capacitance values

High Voltage MLC Chips Tin/Lead Termination "B" - 600V to 5000V Applications

NEW 630V RANGE

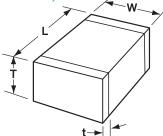

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages, a full range of values that we are offering in this "B" termination.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second.

The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, KYOCERA AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).

HOW TO ORDER


Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

* FLEXITERM is not available in the LD40 Style

** The LD40 Style is not available on Reels.

*** KYOCERA AVX offers nonstandard chip sizes. Contact factory for details.

* Not all values are supported in Automotive grade. Please contact factory for availability

DIMENSIONS

MILLIMETERS (INCHES)

NOT RoHS Compliant

SIZE		LD05 (0805)	LD06 (1206)	LD10* (1210)	LD08* (1808)	LD12* (1812)	LD13* (1825)	LD20* (2220)	LD14* (2225)	LD40* (3640)
(L) Length		2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50	9.14 ± 0.25
(L) Length		(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)	(0.360 ± 0.010)
(W) Width		1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40	10.2 ± 0.25
		(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)	(0.400 ± 0.010)
(t)	min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
terminal	max.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)
*Reflow Sold	doring O	nly								

*Reflow Soldering Only

Performance of ceramic capacitors can be simulated by using the online SpiMLCC software program - http://spicat.avx.com/mlcc Custom values, ratings and configurations are also available.

KYDCERA AWAC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

TDS-SMDMLCC-0020 | Rev 1

SURFACE MOUNT CERAMIC CAPACITOR PRODUCTS -

High Voltage MLC Chips

Tin/Lead Termination "B" - 600V to 5000V Applications

NP0 (C0G) Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

🔇 KY<u>OCERa</u>

HIGH VOLTAGE COG CAPACITANCE VALUES

VOLTA	GE	LD05 (0805)	LD06 (1206)	LD10 (1210)	LD08 (1808)	LD12 (1812)	LD13 (1825)	LD20 (2220)	LD14 (2225)	LD40 (3640)
600/630	min.	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
000/030	max.	330 pF	1200 pF	2700 pF	3300 pF	5600 pF	0.012 µF	0.012 pF	0.018 µF	0.047 µF
1000	min.	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
1000	max.	180 pF	560 pF	1500 pF	2200 pF	3300 pF	8200 pF	0.010 pF	0.010 µF	0.022 µF
1500 ^{min.}		-	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
1500 max.		-	270 pF	680 pF	820 pF	1800 pF	4700 pF	4700 pF	5600 pF	0.010 µF
2000	min.	-	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
2000	max.	-	120 pF	270 pF	330 pF	1000 pF	1800 pF	2200 pF	2700 pF	6800 pF
2500	min.	-	-	-	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF
2300	max.	-	-	-	180 pF	470 pF	1200 pF	1500 pF	1800 pF	3900 pF
3000	min.	-	-	-	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
3000	max.	-	-	-	120 pF	330 pF	820 pF	1000 pF	1200 pF	2700 pF
4000	min.	-	-	-	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
4000	max.	-	-	-	47 pF	150 pF	330 pF	470 pF	560 pF	1200 pF
5000	min.	-	-	-	-	-	_	10 pF	10 pF	10 pF
3000	max.	-	-	-	-	-	-	220 pF	270 pF	820 pF

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

VOLTA	GE	0805	1206	1210	1808	1812	1825	2220	2225	3640
600/630	min.	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 µF	0.010 µF	0.010 µF	0.010 µF
000/030	max.	6800 pF	0.022 µF	0.056 µF	0.068 µF	0.120 µF	0.390 µF	0.270 µF	0.330 µF	0.560 µF
1000	min.	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 µF
max.		1500 pF	6800 pF	0.015 µF	0.018 µF	0.039 µF	0.100 µF	0.120 µF	0.150 µF	0.220 µF
min		-	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
1500 max.		-	2700 pF	5600 pF	6800 pF	0.015 µF	0.056 µF	0.056 µF	0.068 µF	0.100 µF
2000	min.	-	10 pF	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
2000	max.	-	1500 pF	3300 pF	3300 pF	8200 pF	0.022 µF	0.027 µF	0.033 µF	0.027 µF
2500	min.	-	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
2300	max.	-	-	_	2200 pF	5600 pF	0.015 µF	0.018 µF	0.022 µF	0.022 µF
3000	min.	-	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
3000	max.	-	-	-	1800 pF	3900 pF	0.010 µF	0.012 µF	0.015 µF	0.018 µF
4000	min.	-	-	-	-	-	-	-	-	100 pF
4000	max.	-	-	-	-	-	-	-	-	6800 pF
5000	min.	-	-	-	-	-	-	-	-	100 pF
5000	max.	-	-	-	-	-	-	-	-	3300 pF

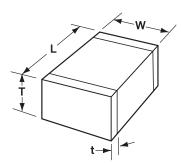
CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

TDS-SMDMLCC-0020 | Rev 1

High Voltage MLC Chips FLEXITERM[®] - 600V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. KYOCERA AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, KYOCERA AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM[®].


The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns.

HOW TO ORDER

1808	A	C ⊤	272	ĸ	A	Z ⊤	2	A
Style 0805 1206 1210 1808 1812 1825 2220 2225 ***	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient COG = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μ F =105	Capacitance Tolerance COG: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Test Level	Termination* Z = FLEXITERM® 100% Tin (RoHS Compliant)	Packaging 2 = 7" Reel 4 = 13" Reel	Special Code A = Standard

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

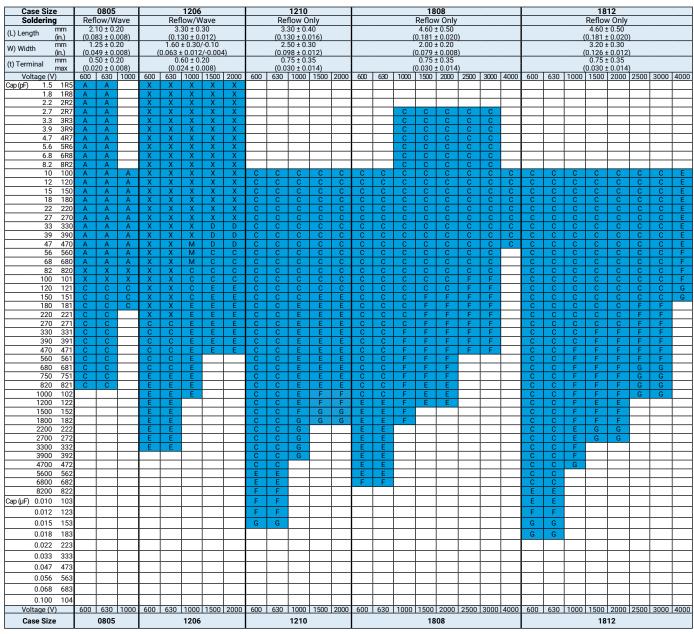
*** KYOCERA AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS millimeters (inches)

SIZE		0805	1206	1210*	1808*	1812*	1825*	2220*	2225*
(L) Length		2.10 ± 0.20 (0.083 ± 0.008)	3.30 ± 0.30 (0.130 ± 0.012)	3.30 ± 0.40 (0.130 ± 0.016)	4.60 ± 0.50 (0.181 ± 0.020)	4.60 ± 0.50 (0.181 ± 0.020)	4.60 ± 0.50 (0.181 ± 0.020)	5.70 ± 0.50 (0.224 ± 0.020)	5.70 ± 0.50 (0.224 ± 0.020)
(W) Width		1.25 ± 0.20 (0.049 ±0.008)	$\frac{1.60^{+0.30}_{-0.10}}{(0.063^{+0.012}_{-0.004})}$	2.50 ± 0.30 (0.098 ± 0.012)	2.00 ± 0.20 (0.079 ± 0.008)	3.20 ± 0.30 (0.126 ± 0.012)	6.30 ± 0.40 (0.248 ± 0.016)	5.00 ± 0.40 (0.197 ± 0.016)	6.30 ± 0.40 (0.248 ± 0.016)
(t) terminal	min. nax.	0.50 ± 0.20 (0.020 ± 0.008)	0.60 ± 0.20 (0.024 ± 0.008)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)

*Reflow Soldering Only

Performance of SMPS capacitors can be simulated by downloading SpiCalci software program - http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available.



NP0 (COG) Dielectric Performance Characteristics

Capacitance Range	10 pF to 0.100 μF (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NP0 (C0G) CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

NP0 (C0G) CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Siz	e				1	825								2220)								2225	5			
Solderin	g				Refle	ow Only	y						R	eflow (Only							Re	eflow	Only			
(L) Length	mm				4.60) ± 0.50)						5	.70 ± 0	.50							5	.70 ± 0	.50			
(L) Length	(in.)				(0.181	1 ± 0.02	20)						(0.2	224 ± 0	0.020)							(0.2	224 ± 0	.020)			
W) Width	mm				6.30) ± 0.40)						5	.00 ± 0	.40							6	.30 ± 0	.40			
w) width	(in.)					3 ± 0.01								197 ± C								(0.2	248 ± 0	.016)			
(t) Terminal	mm					5 ± 0.35								.85 ± 0								0	.85 ± 0	35			
.,	max) ± 0.01)33 ± 0													
Voltage (600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
	1.5 1R5 1.8 1R8																										
	2.2 2R2																										
	2.7 2R7																										
	3.3 3R3																					ĺ		ĺ			
	3.9 3R9																										
	4.7 4R7																										
	5.6 5R6 6.8 6R8																										
	8.2 8R2																										
	10 100	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	Е	F	F
	12 120	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	15 150	Е	Е	Е	E	E	E	Е	E	E	Е	E	E	E	E	E	E	Е	Е	E	E	E	E	E	E	F	F
	18 180	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	22 220	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	27 270 33 330	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	33 330	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	47 470	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G
	56 560	Е	Е	Е	E	E	E	Е	F	Е	Е	E	E	Е	E	Е	Е	Е	Е	E	E	E	E	E	E	F	G
	68 680	E	Е	Е	E	E	E	Е	F	E	Е	E	E	E	E	Е	Е	Е	Е	E	E	E	E	E	E	F	G
	82 820	Е	Е	E	E	E	E	E	F	Е	Е	E	E	E	E	Е	E	Е	Е	E	E	E	E	E	E	F	G
	00 101	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G
	20 121 50 151	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G G	G G
	80 181	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G
	220 221	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G
	270 271	Е	Е	Е	E	Е	E	Е	F	Е	Е	E	E	E	E	Е			Е	E	E	Е	E	E	E	G	G
	330 331	Е	Е	Е	E	E	E	Е	F	E	Е	E	E	E	E	Е			Е	E	E	E	E	E	E	G	
	390 391	E	E	E	E	E	E	E		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	
	470 471	E	E	E	E	E	E	E		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	
	560 561 580 681	E	E	E	E	E	E F	E		E	E	E	E	E	E F	F			E	E	E	E	E	E	E	G	
	750 751	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	E	E		
	320 821	Е	Е	Е	E	E	F	F		Е	Е	E	E	Е	F	F			Е	E	E	E	E	F	E		
	000 102	Е	Е	Е	E	E	F	F		Е	Е	E	E	E	F	F			Е	E	E	E	Е	E	E		
	200 122	E	E	E	E	E	G	G		E	E	E	E	E	G	G			E	E	E	E	E	F	F		
	500 152	E	E	E	F	F	G	G		E	E	E	F	F	G	G			E	E	E	E	E	F	F		-
	300 182 200 222	E	E	E	F G	F G	G	G		E	E	E	F G	F G	G	G			E	E	E	E	E	G	G		
	700 272	E	E	E	G	G				E	E	E	G	G					E	E	E	F	F				
	300 332	E	E	E	G	G				E	E	E	G	G					E	E	E	F	F				
	900 392	E	Е	Е	G	G				Е	Е	Е	G	G					Е	Е	Е	G	G				
	700 472	E	E	E	G	G				E	Е	E	G	G					F	F	F	G	G				
	500 562	F	F	F	G	G				F	F	F							F	F	F	G	G				
	300 682 200 822	F G	⊢ G	F G						⊢ G	F G	⊢ G							⊢ G	F G	⊢ G	G	G				-
	00 822 010 103		0	0							0	0							G	G	G						
	012 123										-								G	G	G						
	015 153																		G	G	G						
)18 183																		G	G	G						
	022 223																		G	G	G						
	33 333																		G	G	G	<u> </u>					
	47 473																		G	G	G						
	056 563 068 683																		G G	G G	G G						
	00 104																		G	G							
Voltage (V)	600	630	1000			2500	3000	4000	600	630	1000	1500			3000	4000	5000			1000	1500			3000	4000	5000
Case Siz	e				1	825								2220									2225	5			

 Letter
 A
 C
 E
 F
 G
 X

 Max.
 0.81
 1.45
 1.80
 220
 2.80
 0.94

 Thickness
 (0.032)
 (0.057)
 (0.071)
 (0.087)
 (0.110)
 (0.037)

NOTE: Contact factory for non-specified capacitance

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Siz	'e		0805		1		1206			1		1210)					18	808							18	12			
Soldering		Ref	low/W			Ref	low/W					flow 0							w Only	,							v Only			
	mm (in.)	2.	10 ± 0.1 83 ± 0.0	20	1	3.	.30 ± 0. 30 ± 0.	30			3.	30 ± 0. 30 ± 0.	40					4.60	± 0.50 ± 0.020	2)						4.60	± 0.50 ± 0.020	、 、		
	mm	1.	25 ± 0.2	20		1.60	+0.30/	-0.10			2.	50 ± 0.	30					2.00	± 0.20	·							± 0.020 ± 0.30)		
	(in.)		49 ± 0.0			(0.063	+0.012	/-0.004	4)			98 ± 0. 75 ± 0.			L	-	(± 0.008 ± 0.35	3)							<u>± 0.012</u> ± 0.35)	-	
	mm max		20 ± 0.				.00 ± 0. 124 ± 0.					75±0. 30±0.					(± 0.35 ± 0.014	1)							± 0.35 ± 0.014)		
Voltage (V		600	630	1000	600		1000	1500					1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF) 100	101	Х	Х	С	С	С	E	E	E	E	E	E	E	E																
120	121	Х	Х	С	С	С	E	E	E	E	E	E	E	E																
150	151	Х	X	С	С	С	E	E	E	E	E	E	E	E										<u> </u>						
180	181	X	X	C	С	С	E	E	E	E	E	E	E	E																
220	221	X	X	C	C	C	E	E	E	E	E	E	E	E				<u> </u>					_	-	-	-	-			
270	271 331	X X	X X	C C	C C	C C	E	E	E	E	E	E	E	E	F	-	-	-	-	-	F		E	E	E	E	E	<u> </u>		
330	331	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E			
470	471	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E	Е	Е	
560	561	X	x	C	c	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F	<u> </u>	E	E	E	E	E	E	E	
680	681	X	X	C C	C	C C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
750	751	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	\vdash
820	821	X	x	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	\vdash
1000	102	X	x	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	\vdash
1200	122	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	F	F	
1500	152	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	
1800	182	х	Х		С	С	E	Е	E	Е	Е	Е	E	E	Е	Е	Е	E	E	F	F		F	F	F	F	F	G	G	
2200	222	х	Х		С	С	E	E	E	Е	Е	Е	F	E	Е	Е	Е	F	F	F			F	F	F	F	F	G	G	
2700	272	Х	Х		С	С	E	E		E	E	Е	F	E	Е	Е	Е	F	F				F	F	F	F	F	G	G	
3300	332	Х	Х		С	С	E			Е	Е	Е	F	Е	E	Е	Е	F	F				F	F	F	F	F	G	G	
3900	392	Х	Х		С	С	E			Е	Е	Е	G		Е	Е	Е	F					F	F	F	F	F	G	G	
4700	472	Х	Х		С	С	E			Е	E	Е	G		E	Е	Е	F					F	F	F	F	F	G	G	
5600	562	Х	Х		С	С	Е			E	E	E	G		E	Е	E	F					F	F	F	G	G			
6800	682	Х	Х		С	С	E			E	E	E			E	Е	Е	F					F	F	F	G	G			
8200	822	Х	Х		С	С	E			E	E	Е			E	E	E						F	F	E	G	G			
Cap(µF) 0.010	103	С	С		С	С	Е			Е	E	E			E	E	E						F	F	F	G	G			
0.015	153	С	С		E	E	E			E	E	E			F	F	F						F	F	F	G				
0.018	183	С	С		E	E				E	E	E			F	F	F						F	F	G					
0.022	223	С	С		E	E				E	E	E			F	F	F						F	F	G G					
0.027	273 333				E	E				E	E				F	F							F	F	G					
0.033	333				E	E				E	E			-	F	F		-					F	F	G			-		-
0.039	473					+				E	E				F	F			-	-	-		F	F	G	-				
0.047	563					+				F	F				F	F				+			F	F						$\left - \right $
0.068	683					1				F	F				F	F				1		1	F	F						
0.082	823					1				F	F									1			F	F						
0.100	104		1			1				F	F		1							1		1	F	F						
0.150	154					1									1					1			G	G						
0.220	224		İ		1	İ		1					1	1				1	İ	1	İ	İ	G	G			1	İ	İ	
0.270	274																													
0.330	334																													
0.390	394																													
0.470	474																													
0.560	564																													
0.680	684																													
0.820	824					<u> </u>														 										
1.000	105	(00	6.00	1000	600	600	1002	1500	0000	6.00	600	1002	1502	0000	600	(00	1000	1500	0000	0500	0000	4000	(00	600	1002	1500	0000	0500	0000	4000
Voltage (V Case Siz		600	630 0805		600	630	1206		12000	600		1000 1210		12000	600	630	1000		<u> 2000</u> 08	2500	3000	4000	600	1 630	1000		12000 12	12500	3000	4000
0430 012							.2.00					1210								-										

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

072022

X7R CAPACITANCE RANGE

0.81

(0.032)

Max.

Thickness

1.45

(0.057)

1.80

(0.071)

2.80

(0.110)

2 20

(0.087)

3.10

(0.120)

0.94

(0.037)

PREFERRED SIZES ARE SHADED

Case Size	+					25								2220									2225									3640				
Soldering	+					w Only ± 0.50								low 0 70 0.5									flow 0 70 ± 0.									eflow 0 .14 ± 0.				
(L) Length (in.)	<u>'</u>					0.020)						(0.2	24 0.0	20)								24 ± 0									$14 \pm 0.$ $360 \pm 0.$				
W) Width mm						± 0.40 ± 0.01								00 0.4 97 0.0									30 ± 0. 18 ± 0.									.72 ± 0. 225 ± 0.				
(t) Terminal mm	η				0.75 :	± 0.35							0.	85 0.3	5			_				0.8	35 ± 0.	.35							0.	76 (0.0	30)			_
IIIda		001	<u></u>			± 0.01		12000	14000	600	620	1000		3 ± 0.		2000	4000	5000	600	620	1000		33 ± 0		2000	4000	5000	600	620	1000		52 (0.0	62) 2500	2000	4000	5000
Voltage (V) Cap (pF) 100 10			030	1000	1500	2000	2500	3000	4000	000	030	1000	1500	2000	2500	3000	4000	5000	600	030	1000	1500	2000	2500	3000	4000	5000	600	030	1000	1500	2000	2500	3000	4000	5000
120 12	_																																			
150 15	51																																			
180 18	_																																			
220 22		-+																																		
270 27	_																																			
390 39	_			_														_																		
470 47	71																																			
560 56	51																																			
680 68																													L	L	L					<u> </u>
750 75	_	\rightarrow		_				<u> </u>	⊢┨																											
820 82		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1200 12		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1500 15		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1800 18	32	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2200 22		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2700 27		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3300 33		F	F	F	F	F	F	F		F	F	F	F	F	F	G G	_		F	F	F	F	F	F	F			G G	G G	G G	G G	G G	G G	G G	G G	G
4700 47		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
5600 56		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
6800 68		F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	
8200 82	22	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		
Cap (µF) 0.010 10	33	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		
0.015 15	53	F	F	F	G	G	G			F	F	F	G	G	G			F F G										G	G							
0.018 18		F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G		
0.022 22		F	F	F	G	G				F	F	F	G	G					F	F	F	G	G	G				G	G	G	G	G	G			
0.027 27		F	F	F	G					F	F	F	G	G					F	F	F	G	G					G	G	G	G	G				-
0.033 33		F	F	F	G G			<u> </u>		F	F	F	G G						F	F	F	G G	G					G G	G G	G G	G G					-
0.039 35	_	F	F	F	P					F	F	F	G						F	F	F	G						G	G	G	G					
0.056 56		F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
0.068 68		F	F	G						F	F	G							F	F	F	G						G	G	G	G					
0.082 82	23	F	F	G		1				F	F	G							F	F	G							G	G							
0.100 10)4	F	F	G						F	F	G							F	F	G							G	G							
0.150 15		F	F							F	F	G							F	F	G							G	G							
0.220 22		F	F							F	F	G							F	F								G	G	<u> </u>						\vdash
0.270 27		F	F							F	F								F	F								G G	G G							\vdash
0.330 33		F	F			-	-	-		F	F								F	F			\vdash			\vdash		G	G							
0.470 47		F	F							F	F								F	F								G	G							
0.560 56	54	G	G							G	G								F	F								G	G							
0.680 68	_	T								G	G								G	G																
0.820 82	_	\rightarrow				-				G	G								G	G																\square
1.000 10 Voltage (V)		500	630	1000	1500	2000	2500	3000	4000	G 600	G 630	1000	1500	2000	2500	3000	4000	5000	G 600	G 630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Case Size	Ť					B25		, 2000		- 50				2220									2225									3640				
																								N	отг.	0.00	+	fa at -								
Letter		A		С			Е		F	I	(3		Р	X NOTE: Contact factory for non-specified capacitance values																					
Max		01		1 /			-		2 20		2			2 10		0.04										сар	acita	incé	vaiue	:5						

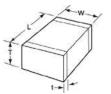
High Voltage MLC Chip Capacitors For 600V to 3000V Automotive Applications - AEC-Q200

Modern automotive electronics could require components capable to work with high voltage (e.g. xenon lamp circuits or power converters in hybrid cards). KYOCERA AVX offers high voltage ceramic capacitors qualified according to AEC-Q200 standard.

High value, low leakage and small size are diffocult parameters to obtain in cpacitors for high voltage systems. KYOCERA AVX special hgih voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Due to high voltage nature, larger physical dimensions are necessary. These larger sizes require special precautions to be taken in applying of MLC chips. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

To improve mechanical and thermal resistance, KYOCERA AVX recommend to use flexible terminations system - FLEXITERM®.


HOW TO ORDER

1210	С	С	223	К	4	т	2	Α
	T	Т		T	\top	Т	T	T
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure Rate	Terminations	Packaging	Special Code
1206	C = 630V	X7R = C	Code	Tolerance	4 = Automotive	T = Plated Ni and Sn	2 = 7" Reel	A = Std. Product
1210	A = 1000V		2 Sig. Digits +	K = ±10%		Z = FLEXITERM [®]	4 = 13" Reel	
1808	S = 1500V		Number of Zeros	$M = \pm 20\%$				
1812	G = 2000V		e.g. 103 = 10nF					
2220	W = 2500V		(223 = 22nF)					
	H = 3000V							

*KYOCERA AVX offers nonstandard case size. Contact factory for details.

Notes: Capacitors with X7R dielectrics are not indeded for applications across AC supply mains or AC line filtering with polarity reversal. Please contact KYOCERA AVX for recommendations

CHIP DIMENSIONS DESCRIPTION

L = Length W = Width T = Thickness t = Terminal

(SEE CAPACITANCE RANGE CHART ON PAGE 128)

X7R DIELECTRIC PERFORMANCE CHARACTERISTICS

Parameter/Test	Specification Limits	Measuring Conditions
Operating Temperature Range	-55°C to +125°C	Temperature Cycle Chamber
Capacitance Dissipation Factor	within specified tolerance 2.5% max.	Freq.: 1kHz ±10% Voltage: 1.0Vrm s ±0.2Vrms
Capacitance Tolerance	±5% (J), ±10% (K), ±20% (M)	T = +25°C, V = 0Vdc
Temperature Characteristics	X7R = ±15%	Vdc = 0V, T = (-55°C to +125°C)
Insulation Resistance	100GΩ min. or 1000MΩ • μF min. (whichever is less) 10GΩ min. or 100MΩ • μF min. (whichever is less)	T = +25°C, V = 500Vdc T = +125°C, V = 500Vdc (t ≥ 120 sec, I ≤ 50mA)
Dielectric Strength	No breakdown or visual defect	120% of rated voltage t ≤ 5 sec, l ≤ 50mA

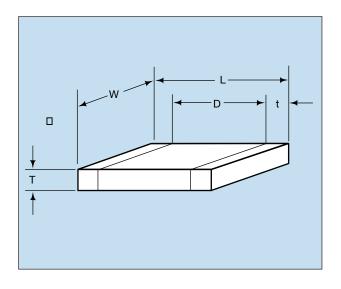
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

TDS-SMDMLCC-0018 | Rev 1

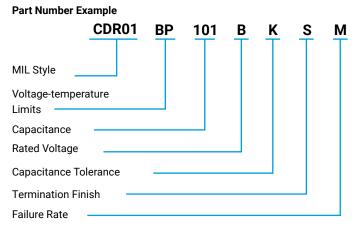
X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Siz	e			1206					10				_	808					18						2220		
Solderin	g			low/W				Reflow		e			Reflow							v Only					flow O		
(L) Length	mm			8.2 ± 0.					± 0.2					± 0.25						± 0.3					.7 ± 0.		
	(in.)		<u> </u>	26 ± 0.			(().126 :		8)			(0.18 :		<u></u>			(0		± 0.012	2)				24 ± 0		
W) Width	mm			.6±0.					± 0.2	- `				± 0.25						± 0.2	- `				5 ± 0.4		
	(in.)		<u> </u>	63 ± 0.			((0.098 :		8)			(0.08 :					(0		± 0.008					97 ± 0.		
(t) Terminal	mm			.5 ± 0.2					0.25				0.61 :							± 0.36					54 ± 0.		
	max			02 ± 0.				(0.02 :).024 :							± 0.014		1			25 ± 0.		
Voltage (,	630			2000		630	1000	1500	2000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	3000
Cap (pF) 101	100	С	E	E	E	E																					
121	120	С	E	E	E	E																					
151	150	С	E	E	E	E																					
181	180	C	E	E	E	E					_	_	_	_	-	_										<u> </u>	
221	220	C	E	E	E	E	-	-	-	-	E	E	E	E	E	E										<u> </u>	
271	270	C	E	E	E	E	E	E	E	E	E	E	E	E	E	E	-									<u> </u>	
331	330	C C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	E									<u> </u>	
<u>391</u> 471	390 470	с С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	E		Г	г		E				<u> </u>	
561	470 560	C C	E	E	E	E	E	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E				\vdash	
681	680	C C	E	E	E	E	E	E	E	E	E	E	F	F	F	F	E	E	E	E	F	F				├───	
821	820	C C	E	E	E	E	E	E	E	E	E	E	F	F	F	F	E	E	E	E	F	F				┝───┘	
102	1000	C C	E	E	E	E	E	E	E	E	E	E	F	F	F	F	E	E	E	E	F	F	F	F	F	F	G
102	1220	C	E	E	E		E	E	E	E							F	F	F	F	G		F	F	F	F	G
152	1500	C	E	E	E		E	E	E	E							F	F	F	F	G		F	F	F	F	G
132	1800	C	E	E			E	E	E	E							F	F	F	F	G		F	F	F	F	G
222	2200	C	E	E			E	E	E	E							F	F	F	F	G		F	F	F	F	G
272	2700	C	E	E			E	E	E	E							F	F	F	F			F	F	F	F	
332	3300	C	E	-			E	E	E	E							F	F	F	F			F	F	F	F	
392	3900	C	E				E	E	E	-							F	F	F	F			F	F	F	F	
472	4700	C	E				E	E	E								F	F	G	G			F	F	F	F	
562	5600	С	E				E	E	E								F	F	G	G			F	F	F	F	
682	6800	Е	E				Е	E									F	F	G	G			F	F	F	F	
822	8200	Е					E	E									F	F	G	G			F	F	G	G	
103	0.01	E					E	E									F	F	G				G	G	G	G	
123	0.012						E	E									F	F	G				G	G	G	G	
153	0.015						E	E									F	F	G				G	G	G	G	
	0.018						E	E									F	F					G	G	G	G	
	0.022						E										F	F					G	G	G	G	
	0.027						Q										F						G	G			
	0.033																F						G	G			
	0.039																F						G	G		<u> </u>	
	0.047																F						G	G		<u> </u>	
563 683																							G G	G G		├ ───	
	0.068																						G	G		\vdash	
104	0.082																						G	G		├───	
104	0.12																						G	3			
154	0.12		<u> </u>	<u> </u>											<u> </u>								G				
224	0.13		<u> </u>	<u> </u>	<u> </u>																					<u> </u>	
334	0.33																										
474	0.47																										
684	0.68																										
105	1										1																
155	1.5																										
225	2.2																										
335	3.3					1		1	İ		1											1		1	İ		
475	4.7					1		1	İ	İ	1											1		1			
106	10																										
226	22																										
WVDC		630	1000	1500	2000	2500	630	1000	1500	2000	630	1000			2500	3000	630	1000			2500	3000	630	1000		2000	3000
Size				1206				12	10				18	808					18	12					2220		
NOTE: Contact	<i>c</i> .	· -																									


NOTE: Contact factory for non-specified capacitance values

Letter	Α	C	E	F	G	Q
Max	0.81	1.45	1.80	2.20	2.80	1.78
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.070)


CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Part Number Example CDR01 thru CDR06

MILITARY DESIGNATION PER MIL-PRF-55681

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05, CDR06

Voltage Temperature Limits:

- $BP = 0 \pm 30 \text{ ppm/°C} \text{ without voltage; } 0 \pm 30 \text{ ppm/°C} \text{ with rated voltage} \\ \text{from -55°C to +125°C}$
- BX = $\pm 15\%$ without voltage; $\pm 15 25\%$ with rated voltage from -55°C to ± 125 °C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J \pm 5%, K \pm 10%, M \pm 20%

Termination Finish:

- M = Palladium silver
- N = Silver-nickel-gold
- S = Solder coated final with a minimum of 4 percent lead
- T = Silver
- U = Base metallization-barrier metal-solder coated
- (tin/lead alloy, with a minimum of 4 percent lead) W = Base metallization-barrier metal-tinned
- (tin or tin/lead alloy) Y = Base metallization-barrier metal-tin (100 percent)
- Z = Base metallization-barrier metal-tinned
- (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

Per	Style Longth (L)	Width (W)	Thickr	ness (T)		D	Terminatio	n Band (t)	
MIL-PRF-55681	Style	Length (L)	Width (W)	Min.	Max.	Min.	Max.	Min.	Max.
CDR01	0805	.080 ± .015	.050 ± .015	.022	.055	.030	-	.010	-
CDR02	1805	.180 ± .015	.050 ± .015	.022	.055	-	_	.010	.030
CDR03	1808	.180 ± .015	.080 ± .018	.022	.080	-	_	.010	.030
CDR04	1812	.180 ± .015	.125 ± .015	.022	.080	-	-	.010	.030
CDR05	1825	.180 ^{+.020} .015	+.020 .250 ₋ .015	.020	.080	_	_	.010	.030
CDR06	2225	.225 ± .020	.250 ± .020	.020	.080	-	—	.010	.030

CROSS REFERENCE: MIL-PRF-55681/CDR01 THRU CDR06*

*For CDR11, 12, 13, and 14 see KYOCERA AVX Microwave Chip Capacitor Catalog

KYDECERA AWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Military Part Number Identification CDR01 thru CDR06

		C	DR01 thru C	DR06	to MIL-PRF-	55681			
Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC	Military Type Designation/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
Style 0805/CI	0R01	1			Style 1808/CDF	203			
CDR01BP100B-		J,K	BP	100	CDR03BP331B	330	J,K	BP	100
CDR01BP120B	-	J	BP	100	CDR03BP391B	390	Ĵ	BP	100
CDR01BP150B		J,K	BP	100	CDR03BP471B	470	J,K	BP	100
CDR01BP180B		J	BP	100	CDR03BP561B	560	Ĵ	BP	100
CDR01BP220B		J,K	BP	100	CDR03BP681B	680	J,K	BP	100
CDR01BP270B		J	BP	100	CDR03BP821B	820	Ĵ	BP	100
CDR01BP330B		J,K	BP	100	CDR03BP102B	1000	J,K	BP	100
CDR01BP390B		J	BP	100	CDR03BX123B	12,000	K	BX	100
CDR01BP470B	-	J,K	BP	100	CDR03BX153B	15.000	K,M	BX	100
CDR01BP560B		J	BP	100	CDR03BX183B	18.000	K	BX	100
CDR01BP680B		J,K	BP	100	CDR03BX223B	22,000	K,M	BX	100
CDR01BP820B		J	BP	100	CDR03BX273B	27.000	К	BX	100
CDR01BP101B		J,K	BP	100	CDR03BX333B	33.000	K,M	BX	100
CDR01B121B		J,K	BP,BX	100	CDR03BX393A	39.000	К	BX	50
CDR01B151B		J,K	BP,BX	100	CDR03BX473A	47.000	K,M	BX	50
CDR01B181B		J,K	BP,BX	100	CDR03BX563A	56.000	K	BX	50
CDR01BX221B		K,M	BX	100	CDR03BX683A	68.000	K,M	BX	50
CDR01BX271B		ĸ	BX	100	Style 1812/CDF	R04			
CDR01BX331B		K,M	BX	100	CDR04BP122B	1200	J	BP	100
CDR01BX391B		ĸ	BX	100	CDR04BP152B	1500	J,K	BP	100
CDR01BX471B	- 470	K,M	BX	100	CDR04BP182B	1800	Ĵ	BP	100
CDR01BX561B	- 560	ĸ	BX	100	CDR04BP222B	2200	J,K	BP	100
CDR01BX681B	- 680	K,M	BX	100	CDR04BP272B	2700	J	BP	100
CDR01BX821B	- 820	K	BX	100	CDR04BP332B	3300	J,K	BP	100
CDR01BX102B	- 1000	K,M	BX	100	CDR04BX393B	39.000	ĸ	BX	100
CDR01BX122B	- 1200	K	BX	100	CDR04BX473B	47.000	K,M	BX	100
CDR01BX152B	- 1500	K,M	BX	100	CDR04BX563B	56.000	ĸ	BX	100
CDR01BX182B	- 1800	K	BX	100	CDR04BX823A	82.000	к	BX	50
CDR01BX222B	- 2200	K,M	BX	100	CDR04BX104A	100,000	K,M	BX	50
CDR01BX272B	- 2700	K	BX	100	CDR04BX124A	120,000	К	BX	50
CDR01BX332B	- 3300	K,M	BX	100	CDR04BX154A	150.000	K,M	BX	50
CDR01BX392A		K	BX	50	CDR04BX184A	180.000	К	BX	50
CDR01BX472A	- 4700	K,M	BX	50	Style 1825/CDF	205			
Style 1805/CI	DR02				CDR05BP392B	3900	J,K	BP	100
CDR02BP221B	- 220	J,K	BP	100	CDR05BP472B	4700	J,K	BP	100
CDR02BP271B	- 270	Ĵ	BP	100	CDR05BP562B	5600	J,K	BP	100
CDR02BX392B	- 3900	К	BX	100	CDR05BX683B	68,000	K,M	вх	100
CDR02BX472B	- 4700	K,M	BX	100	CDR05BX823B	82,000	ĸ	BX	100
CDR02BX562B	- 5600	К	BX	100	CDR05BX104B	100,000	K,M	BX	100
CDR02BX682B	- 6800	K,M	BX	100	CDR05BX124B	120,000	ĸ	BX	100
CDR02BX822B	- 8200	K	BX	100	CDR05BX154B	150.000	K,M	BX	100
CDR02BX103B	- 10,000	K,M	BX	100	CDR05BX224A	220.000	K,M	BX	50
CDR02BX123A		ĸ	BX	50	CDR05BX274A	270,000	ĸ	BX	50
CDR02BX153A		K,M	BX	50	CDR05BX334A	330,000	K,M	BX	50
CDR02BX183A		K	BX	50	Style 2225/CDF	206			
CDR02BX223A	- 22,000	K,M	BX	50	CDR06BP682B	6800	J,K	BP	100
II					CDR06BP822B	8200	J,K	BP	100
	Add appropria	te failure rate			CDR06BP103B	10,000	J,K	BP	100
	and the second				CDR06BX394A	390.000	K	BX	50
	Add appropriation	te termination f	inish		CDD06DX474A	470.000		DY.	50

Add appropriate termination finish

Capacitance Tolerance

Add appropriate failure rate

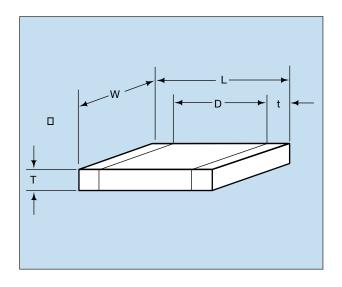
Add appropriate termination finish

K,M

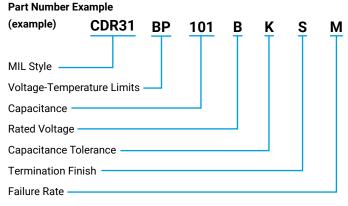
BX

50

Capacitance Tolerance


470.000

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


CDR06BX474A-

Part Number Example CDR31 thru CDR35

MILITARY DESIGNATION PER MIL-PRF-55681

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

Voltage-Temperature Limits:

- BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C
- BX = $\pm 15\%$ without voltage; $\pm 15 25\%$ with rated voltage from -55° C to $\pm 125^{\circ}$ C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Termination Finish:

- M = Palladium silver
- N = Silver-nickel-gold
- S = Solder coated final with a minimum of 4 percent lead
- T = Silver
- U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)
- W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)
- Y = Base metallization-barrier metal-tin (100 percent)
- Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

Per MIL-PRF-55681	Style	Length (L)	Width (W)	Thickness (T)	D	Termination Band (t)		
Per MIL-PRF-55001	Style	(mm)	(mm)	Max. (mm)	Max. (mm)	Min. (mm)	Max. (mm)	
CDR31	0805	2.00	1.25	1.3	.50	.70	.30	
CDR32	1206	3.20	1.60	1.3	_	.70	.30	
CDR33	1210	3.20	2.50	1.5	—	.70	.30	
CDR34	1812	4.50	3.20	1.5	-	.70	.30	
CDR35	1825	4.50	6.40	1.5	_	.70	.30	

CROSS REFERENCE: MIL-PRF-55681/CDR31 THRU CDR35

Military Part Number Identification CDR31

WVDC

Military Type Designation $\underline{1}$ /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC	Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits
Style 0805/0	DR31 (BP))			Style 0805/0	DR31 (BP)) cont'd	
CDR31BP1R0B	1.0	B,C	BP	100	CDR31BP101B	100	F,J,K	BP
CDR31BP1R1B	1.1	B,C	BP	100	CDR31BP111B	110	F,J,K	BP
CDR31BP1R2B	1.2	B,C	BP	100	CDR31BP121B	120	F,J,K	BP
CDR31BP1R3B	1.3	B,C	BP	100	CDR31BP131B	130	F,J,K	BP
CDR31BP1R5B	1.5	B,C	BP	100	CDR31BP151B	150	F,J,K	BP
CDR31BP1R6B	1.6	B,C	BP	100	CDR31BP161B	160	F,J,K	BP
CDR31BP1R8B	1.8	B,C	BP	100	CDR31BP181B	180	F,J,K	BP
CDR31BP2R0B	2.0	B,C	BP	100	CDR31BP201B	200	F,J,K	BP
CDR31BP2R2B	2.2	B,C	BP	100	CDR31BP221B	220	F,J,K	BP
CDR31BP2R4B	2.4	B,C	BP	100	CDR31BP241B	240	F,J,K	BP
CDR31BP2R7B	2.7	B,C,D	BP	100	CDR31BP271B	270	F,J,K	BP
CDR31BP3R0B	3.0	B,C,D	BP	100	CDR31BP301B	300	F,J,K	BP
CDR31BP3R3B	3.3	B,C,D	BP	100	CDR31BP331B	330	F,J,K	BP
CDR31BP3R6B	3.6	B,C,D	BP	100	CDR31BP361B	360	F,J,K	BP
CDR31BP3R9B	3.9	B,C,D	BP	100	CDR31BP391B	390	F,J,K	BP
CDR31BP4R3B	4.3	B,C,D	BP	100	CDR31BP431B	430	F,J,K	BP
CDR31BP4R7B	4.7	B,C,D	BP	100	CDR31BP471B	470	F,J,K	BP
CDR31BP5R1B	5.1	B,C,D	BP	100	CDR31BP511A	510	F,J,K	BP
CDR31BP5R6B	5.6	B,C,D	BP	100	CDR31BP561A	560	F,J,K	BP
CDR31BP6R2B	6.2	B,C,D	BP	100	CDR31BP621A	620	F,J,K	BP
CDR31BP6R8B	6.8	B,C,D B,C,D	BP	100	CDR31BP681A	680	F,J,K	BP
	7.5		BP	100			•	ВР
CDR31BP7R5B	8.2	B,C,D B,C,D	BP	100	Style 0805/C	DR31 (BX)		
CDR31BP8R2B	9.1	B,C,D B,C,D	BP	100		• •		DV.
CDR31BP9R1B	9.1 10		BP	100	CDR31BX471B	470	K,M	BX
CDR31BP100B		FJ,K			CDR31BX561B	560	K,M	BX
CDR31BP110B	11	FJ,K	BP	100	CDR31BX681B	680	K,M	BX
CDR31BP120B	12	FJ,K	BP	100	CDR31BX821B	820	K,M	BX
CDR31BP130B	13	FJ,K	BP	100	CDR31BX102B	1,000	K,M	BX
CDR31BP150B	15	FJ,K	BP	100	CDR31BX122B	1,200	K,M	BX
CDR31BP160B	16	FJ,K	BP	100	CDR31BX152B	1,500	K,M	BX
CDR31BP180B	18	FJ,K	BP	100	CDR31BX182B	1,800	K,M	BX
CDR31BP200B	20	F,J,K	BP	100	CDR31BX222B	2,200	K,M	BX
CDR31BP220B	22	FJ,K	BP	100	CDR31BX272B	2,700	K,M	BX
CDR31BP240B	24	F,J,K	BP	100	CDR31BX332B	3,300	K,M	BX
CDR31BP270B	27	FJ,K	BP	100	CDR31BX392B	3,900	K,M	BX
CDR31BP300B	30	FJ,K	BP	100	CDR31BX472B	4,700	K,M	BX
CDR31BP330B	33	F,J,K	BP	100	CDR31BX562A	5,600	K,M	BX
CDR31BP360B	36	FJ,K	BP	100	CDR31BX682A	6,800	K,M	BX
CDR31BP390B	39	F,J,K	BP	100	CDR31BX822A	8,200	K,M	BX
CDR31BP430B	43	FJ,K	BP	100	CDR31BX103A	10,000	K,M	BX
CDR31BP470B	47	FJ,K	BP	100	CDR31BX123A	12,000	K,M	BX
CDR31BP510B	51	F,J,K	BP	100	CDR31BX153A	15.000	K,M	BX
CDR31BP560B	56	FJ,K	BP	100	CDR31BX183A	18.000	К,М	BX
CDR31BP620B	62	F,J,K	BP	100				
CDR31BP680B	68	FJ,K	BP	100			C 11	
CDR31BP750B	75	FJ,K	BP	100		 Add appropriat 	e failure rate	
CDR31BP820B	82	F,J,K	BP	100				
CDR31BP910B	91	FJ,K	BP	100		 Add appropriat 	e termination f	inisn

CDR31 to MIL-PRF-55681/7

- Add appropriate failure rate

Add appropriate termination finish

— Capacitance Tolerance

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Capacitance Tolerance

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

L

Military Part Number Identification CDR32

KYOCER	٦
	<
Data d Tanan anatana	

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance Tolerance	Rated temperature and Voltage- Temperature Limits	WVDC	
Style 1206/C	DR32 (BP)				St
Style 1206/C CDR32BP1R0B CDR32BP1R1B CDR32BP1R2B CDR32BP1R3B CDR32BP1R3B CDR32BP2R2B CDR32BP2R2B CDR32BP2R2B CDR32BP2R2B CDR32BP2R7B CDR32BP3R6B CDR32BP3R6B CDR32BP4R3B CDR32BP4R3B CDR32BP4R3B CDR32BP4R3B CDR32BP4R3B CDR32BP4R3B CDR32BP4R3B CDR32BP4R3B CDR32BP4R3B CDR32BP4R3B CDR32BP4R3B CDR32BP4R2B CDR32BP4R3B	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	B,C B,C B,C B,C B,C B,C B,C B,C B,C B,C,D B,C B,C B,C B,C B,C B,C B,C B,C B,C B,C	BP BP BP BP BP BP BP BP BP BP BP BP BP B	100 100 100 100 100 100 100 100 100 100	St 00000 00000 00000 00000 00000
CDR32BP100B CDR32BP110B CDR32BP130B CDR32BP150B CDR32BP150B CDR32BP160B CDR32BP200B CDR32BP200B CDR32BP270B CDR32BP270B CDR32BP300B CDR32BP300B CDR32BP300B CDR32BP470B CDR32BP470B CDR32BP470B CDR32BP510B CDR32BP50B CDR32BP50B CDR32BP50B CDR32BP50B CDR32BP750B CDR32BP750B CDR32BP750B CDR32BP750B CDR32BP750B CDR32BP750B CDR32BP750B CDR32BP750B CDR32BP750B CDR32BP750B	10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91	ĿŊŢŖŢŔŢŔŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ	BP BP BP BP BP BP BP BP BP BP BP BP BP B	100 100 100 100 100 100 100 100 100 100	0 000 000 000 000 000 000 000 000 000

CDR32 to	MII -PR	-55681/8
	/ IVIIL I I\I	00001/0

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

	-		1	
Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance Tolerance	Rated Temperature and Voltage- Temperature Limits	WVDC
Style 1206/0	DR32 (BP)	cont'd		
CDR32BP101B	100	FJ,K	BP	100
CDR32BP111B	110	FJ,K	BP	100
CDR32BP121B	120	FJ,K	BP	100
CDR32BP131B	130	FJ,K	BP	100
CDR32BP151B	150	FJ,K	BP	100
CDR32BP161B	160	FJ,K	BP	100
CDR32BP181B	180	F,J,K	BP	100
CDR32BP201B	200	FJ,K	BP	100
CDR32BP221B	220	F,J,K	BP	100
CDR32BP241B	240	FJ,K	BP	100
CDR32BP271B	270	FJ,K	BP	100
CDR32BP301B	300	F,J,K	BP	100
CDR32BP331B	330	FJ,K	BP	100
CDR32BP361B	360	F,J,K	BP	100
CDR32BP391B	390	FJ,K	BP	100
CDR32BP431B	430	FJ,K	BP	100
CDR32BP471B	470	F,J,K	BP	100
CDR32BP511B	510	FJ,K	BP	100
CDR32BP561B	560	F,J,K	BP	100
CDR32BP621B	620	FJ,K	BP	100
CDR32BP681B	680	FJ.K	BP	100
CDR32BP751B	750	F,J,K	BP	100
CDR32BP821B	820	FJ.K	BP	100
CDR32BP911B	910	F,J,K	BP	100
CDR32BP102B	1,000	FJ,K	BP	100
CDR32BP112A	1,100	FJ,K	BP	50
CDR32BP122A	1.200	F,J,K	BP	50
CDR32BP132A	1,300	FJ,K	BP	50
CDR32BP152A	1,500	F,J,K	BP	50
CDR32BP162A	1,600	FJ,K	BP	50
CDR32BP182A	1,800	FJ,K	BP	50
CDR32BP202A	2,000	F,J,K	BP	50
CDR32BP222A	2,200	FJ,K	BP	50
Style 1206/C				
•			DY.	100
CDR32BX472B	4,700	K,M	BX	100
CDR32BX562B	5,600	K,M	BX	100
CDR32BX682B	6,800	K,M	BX BX	100
CDR32BX822B	8,200	K,M		100
CDR32BX103B	10,000	K,M	BX	100
CDR32BX123B	12,000	K,M	BX	100
CDR32BX153B	15.000	K,M	BX	100
CDR32BX183A	18.000	K,M	BX	50
CDR32BX223A	22,000	K,M	BX	50
CDR32BX273A	27,000	K,M	BX	50
CDR32BX333A	33.000	K,M	BX	50
CDR32BX393A	39.000	K,M	BX	50

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

CALCERTED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

040121

Military Part Number Identification CDR33/34/35

		CD	R33/34/35 t	o MIL	-PRF-55681	/9/10/11
Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC	Military Type Designation $\underline{1}$ /	Capacitance in pF
Style 1210/0	DR33 (BP)				Style 1812/	CDR34 (BX
CDR33BP102B CDR33BP112B CDR33BP122B	1,000 1,100 1,200 1,300	FJ,K FJ,K FJ,K	BP BP BP	100 100 100	CDR34BX273B CDR34BX333B CDR34BX393B CDR34BX393B	33.000 39.000
CDR33BP132B CDR33BP152B	1,500	FJ,K FJ,K FJ.K	BP BP BP	100 100 100	CDR34BX473B CDR34BX563B CDR34BX104A	47.000 56.000
CDR33BP162B CDR33BP182B CDR33BP202B CDR33BP222B CDR33BP242A	1,800 1,800 2,000 2,200 2,400	FJ,K F,J,K FJ,K F,J,K FJ,K	BP BP BP BP BP BP	100 100 100 100 50	CDR34BX104A CDR34BX124A CDR34BX154A CDR34BX184A	120,000
CDR33BP272A CDR33BP302A	2,700 3,000	FJ,K F,J,K	BP BP	50 50	Style 1825/	CDR35 (BP
CDR33BP332A	3,300	FJ,K	BP	50	CDR35BP472B CDR35BP512B CDR35BP562B	4,700 5,100 5,600
CDR33BX153B CDR33BX183B CDR33BX223B	15.000 18.000 22,000	K,M K,M K,M	BX BX BX	100 100 100	CDR35BP622B CDR35BP682B CDR35BP752B CDR35BP822B	6,200 6,800 7,500 8,200
CDR33BX273B CDR33BX393A CDR33BX473A	27.000 39.000 47.000	К,М К,М К,М	BX BX BX	100 50 50	CDR35BP912B CDR35BP103B	9,100 10,000
CDR33BX563A CDR33BX683A CDR33BX823A	56.000 68.000 82,000	К,М К,М К,М	BX BX BX BX BX	50 50 50 50 50	CDR35BP113A CDR35BP123A CDR35BP133A CDR35BP153A	11,000 12,000 13.000 15.000
CDR33BX104A Style 1812/C	100,000	K,M	ВХ	50	CDR35BP163A CDR35BP183A	18,000
CDR34BP222B CDR34BP242B	2,200	FJ,K	BP BP	100 100	CDR35BP203A CDR35BP223A	
CDR34BP242B CDR34BP272B CDR34BP302B	2,400 2,700 3.000	F,J,K FJ,K F,J,K	BP BP BP	100 100 100	Style 1825/	CDR35 (BX
CDR34BP332B CDR34BP362B	3,300 3,600	FJ,K FJ,K	BP BP	100 100	CDR35BX563B CDR35BX683B CDR35BX683B	68.000
CDR34BP392B CDR34BP432B CDR34BP472B CDR34BP512A	3,900 4,300 4,700 5,100	F,J,K FJ,K F,J,K FJ,K	BP BP BP BP	100 100 100 50	CDR35BX823B CDR35BX104B CDR35BX124B CDR35BX154B	100,000 120,000
CDR34BP562A CDR34BP622A CDR34BP682A	5,600 6,200 6,800	FJ,K F,J,K FJ,K	BP BP BP	50 50 50	CDR35BX184A CDR35BX224A CDR35BX274A	180.000 220,000
CDR34BP752A CDR34BP822A CDR34BP912A	7,500 8,200 9,100	F,J,K FJ,K FJ,K	BP BP BP	50 50 50	CDR35BX334A CDR35BX394A CDR35BX474A	
CDR34BP103A	10,000	F,J,K	BP	50		Add appropria

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

Rated temperature Capacitance and voltage-WVDC tolerance temperature limits K) K,M ВΧ 100 к,М ВΧ 100 K.M ΒX 100 K,M ВΧ 100 K,M ВΧ 100 K,M ВΧ 50 K,M ВΧ 50 K,M ВΧ 50 K,M ВΧ 50 P) FJ.K ΒP 100 ΒP 100 F,J,K ΒP FJ,K 100 F,J,K ΒP 100 FJ,K ΒP 100 FJ,K ΒP 100 F,J,K ΒP 100 ΒP FJ,K 100 ΒP FJ.K 100 F,J,K BP 50 ΒP 50 FJ,K ΒP F,J,K 50 ΒP FJ,K 50 F,J,K ΒP 50 FJ,K ΒP 50 FJ,K ΒP 50 F,J,K ΒP 50 K) ΒX 100 K,M 100 K,M ΒX K,M ВΧ 100 K,M ВΧ 100 K.M ΒX 100 K,M ВΧ 100 K,M ВΧ 50 ΒX 50 КM K.M ΒX 50 K,M ВΧ 50 K.M RX 50 K,M BX 50

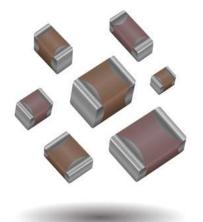
KYOCERa

iate failure rate

Add appropriate termination finish

Capacitance Tolerance

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.



KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

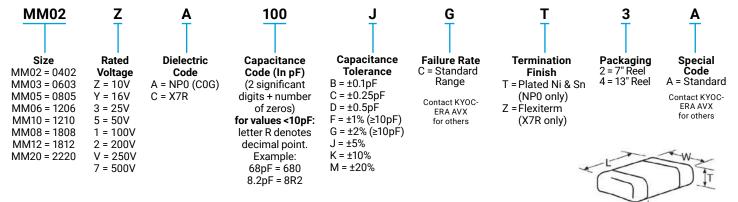
MLCC Medical Applications – MM Series

General Specifications

The MM series is a multi-layer ceramic capacitor designed for use in medical applications other than implantable/life support. These components have the design & change control expected for medical devices and also offer enhanced LAT including reliability testing and 100% inspection.

APPLICATIONS

- Implantable, Non-Life Supporting Medical Devices
- e.g. implanted temporary cardiac monitor, insulin pumps


External, Life Supporting Medical Devices

• e.g. heart pump external controller

External Devices

· e.g. patient monitoring, diagnostic equipment

HOW TO ORDER

COMMERCIAL VS MM SERIES PROCESS COMPARISON

	Commercial	MM Series
Administrative	Standard part numbers; no restriction on who purchases these parts	Specific series part number, used to control supply of product
Lot Qualification Destructive Physical Analysis (DPA)	As per EIA RS469	Increased sample plan – stricter criteria
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing
Design/Change Control	Required to inform customer of changes in: form fit function	KYOCERA AVX will qualify and notify customers before making any change to the following materials or processes: Dielectric formulation, type, or supplier Metal formulation, type, or supplier Termination material formulation, type, or supplier Manufacturing equipment type Quality testing regime including sample size and accept/ reject criteria

NP0 (C0G) - Specifications & Test Methods

Parame	ter/Test	NP0 Specification Limits	Measuring Conditions					
	perature Range	-55°C to +125°C	Temperature Cycle Chamber					
Capac (itance 2	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF 1.0 kHz ± 10% for cap > 1000 pF Voltage: 1.0Vrms ± .2V					
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity					
Dielectric	Strength	No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.					
	Appearance	No defects	Deflection: 2mm					
Resistance to	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Test Time: 30 seconds					
Flexure Stresses	Q	Meets Initial Values (As Above)						
	Insulation Resistance	≥ Initial Value x 0.3	90 mm					
Solder	-	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds					
	Appearance	No defects, <25% leaching of either end terminal	4					
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater						
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 6 seconds. Store at room temperature for 24 ± hours before measuring electrical propertie					
oolder neut	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring electrical properties.					
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2° 30 ± 3 minutes					
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp ≤ 3 minutes					
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2° 30 ± 3 minutes					
ONOCK	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp ≤ 3 minutes					
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature					
	Appearance	No visual defects						
	Capacitance Variation	\leq ±3.0% or ± .3 pF, whichever is greater	Charge device with twice rated voltage in test chamber set at 125°C ± 2°C					
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hours (+48, -0).					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperature for 24 hours					
	Dielectric Strength	Meets Initial Values (As Above)	before measuring.					
	Appearance	No visual defects						
	Capacitance Variation	\leq ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber set at 85°C ± 2°C/ 85%					
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied.					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.					
	Dielectric Strength	Meets Initial Values (As Above)						

KYDEERB The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

NP0/C0G Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE			06	603				0805					
	WVDC	16	25	50	100	16	25	50	100	16	25	50	100
Cap 0.5	0R5												
(pF) 1.0													
1.2	1R2												
1.5	1R5												
1.8	1R8												
2.2	2R2											i	
2.7	2R7											1	
3.3	3R3												
3.9	3R9												
4.7	4R7												
5.6	5R6												
6.8	6R8												
8.2	8R2												
10	100												
10	120												
15	150												
18	180												
22	220												
27	270												
33	330												
39	390											<u> </u>	
47	470												
56	560												
68	680												
82	820												
100	101												
120	121												
120	151												
130	181												
220	221												
270	271												
330	331												
390	391												
470	471												
560	561												
680	681												
820	821												
1000	102												
1200	102												
1200	122												
WVDC		16	25	50	100	16	25	50	100	16	25	50	100
SIZE				603				0805			1206		

KYDEERB The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

113016

X7R Specifications and Test Methods

Parame	ter/Test	X7R Specification Limits	Measuring	Conditions				
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber				
Capac	itance	Within specified tolerance						
Dissipatio	on Factor	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0	Hz ± 10% Vrms ± .2V				
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rate secs @ room te	emp/humidity				
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltag for 500V devices.					
	Appearance	No defects	Deflection: 2mm					
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 30 seconds					
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)						
	Insulation Resistance	≥ Initial Value x 0.3	90 mm					
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5					
	Appearance	No defects, <25% leaching of either end terminal	-					
	Capacitance Variation	≤ ±7.5%						
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.					
oolder medt	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.				
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes				
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes				
Chicon	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro					
	Appearance	No visual defects						
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	at 125°C ± 2°C				
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test cha room temperature for	24 ± 2 hours before				
	Dielectric Strength	Meets Initial Values (As Above)	measu	ining.				
	Appearance	No visual defects						
	Capacitance Variation	≤ ±12.5%	Store in a test chamber ± 5% relative humid	ity for 1000 hours				
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated					
,	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for				
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours before measuring.					

KYDEERB The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

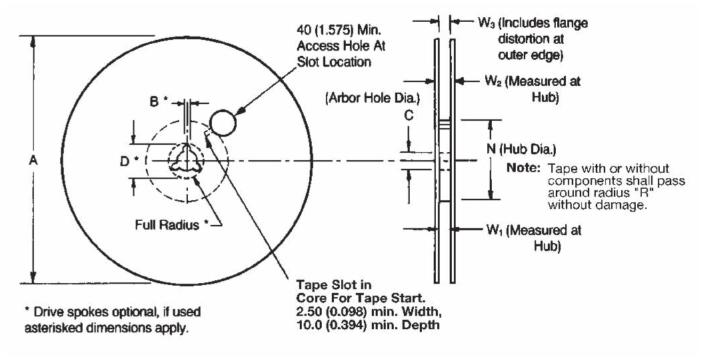
X7R Capacitance Range

PREFERRED SIZES ARE SHADED

	SIZE			040	2			0	60	3				0805							12	06							12	10				1	808	B		18	12		:	222	0		
		WVDC	16	25	50	10	16	25	5	n -	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250	500	50	100	200	50	100	200	250	25	50	100
Cap	220	221	10	20	100	1		120	1	-		200	10	10	20	00	100	200	200	10	10	20	00		200	200	000		10	20	00		200	200	000	00	100	200	00	100	200	200	20	00	100
(pF)	270	271			1		+	+	+	+	-						<u> </u>						1																				\vdash		
(p. /	330	331							+																							1													
	390	391			1		+	1	+	+																				1													\square		
	470	471						+	+																																		\square		
	560	561							\top													1	1						1		1	1										1		1	
	680	681																				1	1								1											1	\square	1	
	820	821						1	T								1						1							1				1								1		1	
	1000	102							\top																																				
	1200	122																																											
	1500	152			1		1	1	1	1							1					1							1	1	1										1	1		1	
	1800	182			1													1				1																				1		1	
	2200	222																																								1			
	2700	272								1																														1	1	1			
	3300	332								1																																1			
	3900	392			1																	1										1		1								1		1	
	4700	472																																											
	5600	562			1																	1												1								1		1	
	6800	682			1																	1												1								1		1	
	8200	822			1													1				1																				1		1	
cap	0.010	103			1																	1																			1	1		1	
uF	0.012	123			1																	1																				1		1	
	0.015	153			1																	1										1										1		1	
	0.018	183																																											
	0.022	223							Τ																																				í T
	0.027	273																																											
	0.033	333																																											
	0.039	393																																											
	0.047	473																																											
	0.056	563																																											
	0.068	683																																											
	0.082	823																																											
	0.10	104																																											
	0.12	124								T																																			
	0.15	154																																											
	0.22	224																																											
	0.33	334																																											
	0.47	474																																											
	0.56	564								Ţ																																			
	0.68	684																																											
	0.82	824																																											
	1.0	105																																											
	1.2	125																																											
	1.5	155																																											
	WVDC)	16	25	50	10	16	25	5 5	0	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250	500	50	100	200	50	100	200	250	25	50	100
	SIZE			040	2			0	60	3					(080	5						12	06							12	10				1	808	B		18	12			222	0

KYDEERB The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

110116



TAPE & REEL QUANTITIES

All tape and reel specifications are in compliance with RS481.

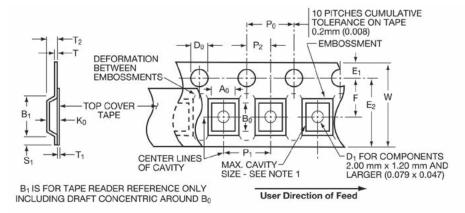
	4mm	8mm	12mm	
Paper or Embossed Carrier		0612, 0508, 0805, 1206, 1210		
Embossed Only	0101		1808	1812, 1825 2220, 2225
Paper Only		0101, 0201, 0306, 0402, 0603		
Qty. per Reel/7" Reel	4,000	1,000, 2,000, 3,000 or 4,000, 10,000, 15,000, 20,000 Contact factory for exact quantity	3,000	500, 1,000 Contact factory for exact quantity
Qty. per Reel/13" Reel		5,000, 10,000, 50,000 Contact factory for exact quantity	10,000	4,000

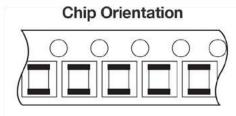
REEL DIMENSIONS

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W₂ Max.	W ₃
4mm	1.80 (7.087)	1.5 (0.059)	13.0±0.5 (0.522±0.020)	20.2 (0.795)	60.0 (2.362)	4.35±0.3 (0.171±0.011)	7.95 (0.312)	
8mm	330	1.5	13.0 ^{+0.50}	20.2	50.0	$8.40_{-0.0}^{+1.5} \\ (0.331_{-0.0}^{+0.059})$	14.4 (0.567)	7.90 Min. (0.311) 10.9 Max. (0.429)
12mm	(12.992)	(0.059)	$(0.512^{+0.020}_{-0.008})$	(0.795)	(1.969)	$12.4^{+2.0}_{-0.0} \\ (0.488^{+0.079}_{-0.0})$	18.4 (0.724)	11.9 Min. (0.469) 15.4 Max. (0.607)

Metric dimensions will govern.

English measurements rounded and for reference only.


(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.


KUDCER8 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Embossed Carrier Configuration

4, 8 & 12mm Tape Only

4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS

Tape Size	D ₀	E ₁	P ₀	P ₂	S ₁ Min.	T Max.	T ₁ Max.
4mm	0.80±0.04	0.90±0.05	2.0±0.04	1.00±0.02	1.075	0.26	0.06
	(0.031±0.001)	(0.035±0.001)	(0.078±0.001)	(0.039±0.0007)	(0.042)	(0.010)	(0.002)
8mm	$\frac{1.50}{(0.059^{+0.004}_{-0.0})}$	1.75 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	0.60	0.60	0.10
& 12mm		(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.024)	(0.024)	(0.004)

VARIABLE DIMENSIONS

Tape Size	B₁ Max.	D ₁ Min.	E ₂ Min.	F	P ₁ See Note 5	R Min. See Note 2	T ₂	W Max.	A ₀ B ₀ K ₀
8mm	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1
8mm 1/2 Pitch	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	2.00 ± 0.10 (0.079 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm Double Pitch	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	8.00 ± 0.10 (0.315 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1
NOTES:					3. Bar code labe	eling (if required) s	hall be on the side	e of the reel oppo	site the round

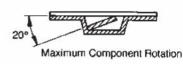
sprocket holes. Refer to EIA-556.

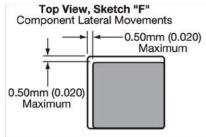
4. B₁ dimension is a reference dimension for tape feeder clearance only.

5. If $P_1 = 2.0$ mm, the tape may not properly index in all tape feeders.

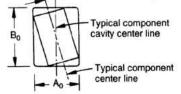
NOTES:

1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that:


b) the component does not protrude beyond the sealing plane of the cover tape. c) the component can be removed from the cavity in a vertical direction without

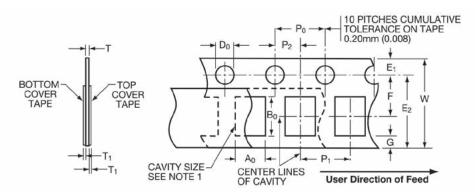

mechanical restriction, after the cover tape has been removed.

d) rotation of the component is limited to 20° maximum (see Sketches D & E).


e) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).

2. Tape with or without components shall pass around radius "R" without damage.

20° maximum component rotation



KUDEER8 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAC

Paper Carrier Configuration

8 & 12mm Tape Only

4, 8 & 12mm Embossed Tape **Metric Dimensions Will Govern**

CONSTANT DIMENSIONS

Tape Size	Do	E	Po	P ₂	T ₁	G. Min.	R Min.
8mm and 12mm	$1.50^{+0.10}_{-0.0} \\ (0.059^{+0.004}_{-0.0})$	1.75 ± 0.10 (0.069 ± 0.004)	4.00 ± 0.10 (0.157 ± 0.004)	2.00 ± 0.05 (0.079 ± 0.002)	0.10 (0.004) Max.	0.75 (0.030) Min.	25.0 (0.984) See Note 2 Min.

VARIABLE DIMENSIONS

Tape Size	P ₁ See Note 4	E ₂ Min.	F	w	A ₀ B ₀	т
8mm	4.00 ± 0.10 (0.157 ± 0.004)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} -0.10 (0.315 ^{+0.012})	See Note 1	1.10mm (0.043) Max.
12mm	4.00 ± 0.10 (0.157 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		for Paper Base Tape and
8mm 1/2 Pitch	2.00 ± 0.05 (0.079 ± 0.002)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} -0.10 (0.315 ^{+0.012})		1.60mm
12mm Double Pitch	8.00 ± 0.10 (0.315 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		(0.063) Max. for Non-Paper Base Compositions

holes. Refer to EIA-556.

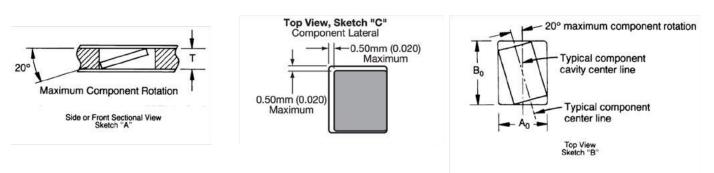
3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket

4. If P₁ = 2.0mm, the tape may not properly index in all tape feeders.

NOTES:

1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that:

a) the component does not protrude beyond either surface of the carrier tape;


b)) the component can be removed from the cavity in a vertical direction without

mechanical restriction after the top cover tape has been removed;

c) rotation of the component is limited to 20° maximum (see Sketches A & B);

d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C).

2. Tape with or without components shall pass around radius "R" without damage.

Bar Code Labeling Standard

KYOCERA AVX bar code labeling is available and follows latest version of EIA-556

KUDEER8 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Basic Capacitor Formulas

I. Capacitance (farads)

English: C = .224 KAΤD Metric: C = <u>.0884 K A</u> Τ_D

II. Energy stored in capacitors (Joules, watt - sec) $E = \frac{1}{2}CV^{2}$

III. Linear charge of a capacitor (Amperes)

 $I = C \frac{dV}{dV}$ dt

IV. Total Impedance of a capacitor (ohms)

 $Z = \sqrt{R_s^2 + (X_C - X_L)^2}$

V. Capacitive Reactance (ohms)

$$x_{\rm C} = \frac{1}{2 \pi \, \rm fC}$$

VI. Inductive Reactance (ohms) $x_1 = 2 \pi fL$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)

D.F.= tan
$$\delta$$
 (loss angle) = $\frac{\text{E.S.R.}}{X_{\text{C}}}$ = (2 π fC) (E.S.R.)

IX. Power Factor (%)

P.F. = Sine (loss angle) = $\cos \varphi$ (phase angle) P.F. = (when less than 10%) = DF

X. Quality Factor (dimensionless)

 $Q = Cotan \delta$ (loss angle) = $-\frac{1}{2}$ D.F.

XI. Equivalent Series Resistance (ohms) E.S.R. = (D.F.) (Xc) = (D.F.) / $(2 \pi fC)$

XII. Power Loss (watts) Power Loss = $(2 \pi fCV^2)$ (D.F.) XIII. KVA (Kilowatts) KVA = $2 \pi fCV^2 \times 10^{-3}$

XIV. Temperature Characteristic (ppm/°C)

T.C. =
$$\frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

XV. Cap Drift (%)

C.D. =
$$\frac{C_1 - C_2}{C_1} \times 100$$

XVI. Reliability of Ceramic Capacitors

XVII. Capacitors in Series (current the same)

Any Number:
$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} - \frac{1}{C_{N}}$$

Two: $C_{T} = \frac{C_{1}C_{2}}{C_{1} + C_{2}}$

XVIII. Capacitors in Parallel (voltage the same) $C_T = C_1 + C_2 - + C_N$

XIX. Aging Rate A.R. = ΔC /decade of time

XX. Decibels

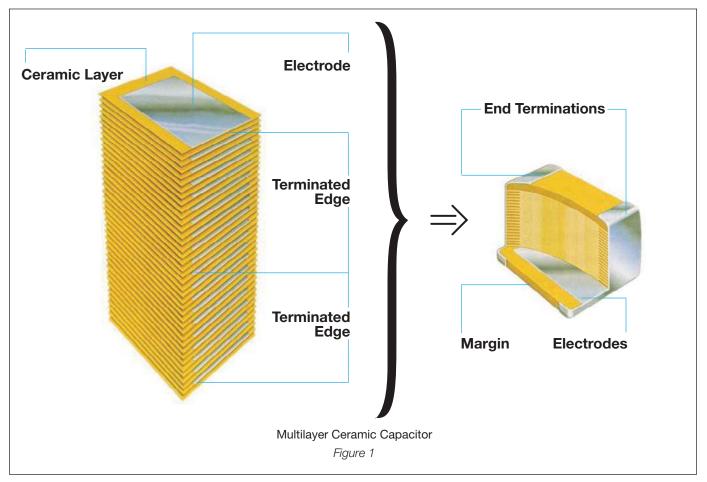
$$db = 20 \log \frac{V_1}{V_2}$$

METRIC PREFIXES	
-----------------	--

SYMBOLS

Pico	X 10 ⁻¹²
Nano	X 10-9
Micro	X 10-6
Milli	X 10⁻₃
Deci	X 10 ⁻¹
Deca	X 10 ⁺¹
Kilo	X 10 ⁺³
Mega	X 10+6
Giga	X 10+9
Tera	X 10 ⁺¹²

K = Dielectric Constant	f	= frequency	L _t	= Test life
A = Area	L	= Inductance	V _t	= Test voltage
T _D = Dielectric thickness	δ	= Loss angle	V _o	= Operating voltage
V = Voltage	φ	= Phase angle	T_t	= Test temperature
t = time	X & Y	' = exponent effect of voltage and temp.	T,	= Operating temperature
R _s = Series Resistance	L。	= Operating life		


KUDEER8 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Basic Construction - A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in

today's electronic equipment.

Formulations - Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 - Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NP0) temperature compensating capacitors (negativepositive 0 ppm/°C).

Class 2 - EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult KYOCERA AVX's software, SpiCap.

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

Table 1: EIA and MIL Temperature Stable and General Application Codes

EIA CODE Percent Capacity Change Over Temperature Range					
RS198	Temperature Range				
X7	-55°C to +125°C				
X6	-55°C to +105°C				
X5	-55°C to +85°C				
Y5	-30°C to +85°C				
Z5	+10°C to +85°C				
Code	Percent Capacity Change				
D	±3.3%				
E	±4.7%				
F	±7.5%				
Р	±10%				
R	±15%				
S	±22%				
Т	+22%, -33%				
U	+22%, - 56%				
V	+22%, -82%				
EXAMPLE – A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% for degrees no more than 7.5% from -20 °C to					

increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F.

MIL CODE							
Symbol	Temperature Range						
A	-55°C to +85°C						
В	-55°C to +125°C						
С	-55°C to +150°C						
Symbol	Cap. Change Cap. Change						
Symbol	Zero Volts	Rated Volts					
R	+15%, -15% +15%, -40%						
S	+22%, -22% +22%, -56%						
W	+22%, -56% +22%, -66%						
Х	+15%, -15% +15%, -25%						
Y	+30%, -70% +30%, -80%						
Z	Z +20%, -20% +20%, -30%						
Temperature charac	Temperature characteristic is specified by combining range and change						
symbols, for exampl	e BR or AW. Specification sla	sh sheets indicate the					
characteristic applicable to a given style of capacitor.							

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

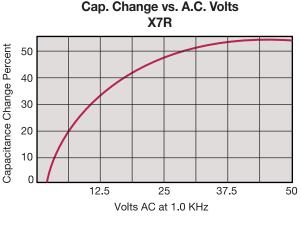
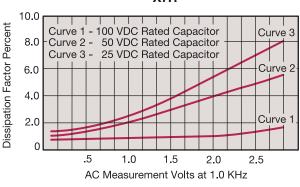



Figure 2

Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

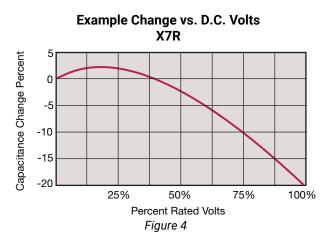
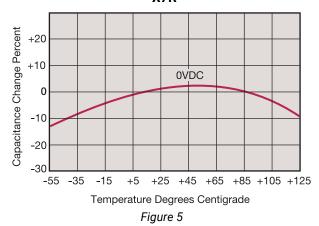
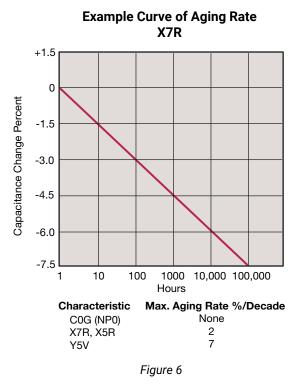

D.F. vs. A.C. Measurement Volts X7R

Figure 3


Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.

KINCLERANCE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.



Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.

If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1/2 hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twentyfour hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. KYOCERA AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from KYOCERA AVX and can be downloaded for free from KYOCERA AVX website: www.kyocera-avx.com.

KYDCERR The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Effects of Mechanical Stress – High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

Reliability – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right) X \left(\frac{T_t}{T_o}\right) Y$$

where

- L_{o} = operating life
- L_t = test life
- V_t = test voltage
- V_{o} = operating voltage

T_o = operating temperature in °C X.Y = see text

T_t = test temperature and

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

- **C** = capacitance (picofarads)
- K = dielectric constant (Vacuum = 1)
- A = area in square inches
- t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant (.0884 for metric system in cm)

Capacitance – The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10^{-6}) , nano (10^{-9}) or pico (10^{-12}) farad level.

Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored – The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^{2}$$

E = energy in joules (watts-sec)
V = applied voltage

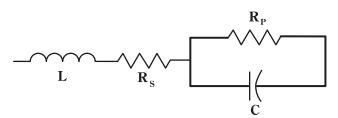
C = capacitance in farads

Potential Change – A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$I_{ideal} = C \frac{dV}{dt}$$

where

I = Current

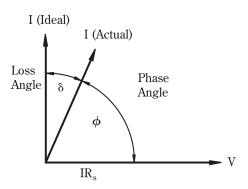

C = Capacitance

dV/dt = Slope of voltage transition across capacitor

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.

Equivalent Circuit – A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

- C = Capacitance L = Inductance
- \mathbf{R}_{s} = Series Resistance
- **R**_n = Parallel Resistance


Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:

$$Z = \sqrt{R_{\rm S}^2 + (X_{\rm C} - X_{\rm L})^2}$$

where

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle – Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.

In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and:

Power Factor (P.F.) = Cos ϕ or Sine δ Dissipation Factor (D.F.) = tan δ

for small values of the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance – The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor =
$$\frac{\text{E.S.R.}}{X_{c}}$$
 = (2 π fC) (E.S.R.)

The watts loss are:

Watts loss = $(2 \pi fCV^2)$ (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

The $\frac{dI}{dt}$ seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.

KYOCERa

Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$f_{res} = \frac{1}{2\pi\sqrt{LC}}$$

Insulation Resistance – Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance RP shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

Dielectric Strength – Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.

Dielectric Absorption – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

Corona – Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

Surface Mounting Guide

MLC Chip Capacitors

REFLOW SOLDERING

	Case Size	D1	D2	D3	D4	D5
	0201	0.85 (0.033)	0.30 (0.012)	0.25 (0.010)	0.30 (0.012)	0.35 (0.014)
D2	0402	1.70 (0.067)	0.60 (0.024)	0.50 (0.020)	0.60 (0.024)	0.50 (0.020)
	0603	2.30 (0.091)	0.80 (0.031)	0.70 (0.028)	0.80 (0.031)	0.75 (0.030)
	0805	3.00 (0.118)	1.00 (0.039)	1.00 (0.039)	1.00 (0.039)	1.25 (0.049)
01 D3	1206	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	1.60 (0.063)
	1210	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	2.50 (0.098)
	1808	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	2.00 (0.079)
D4	1812	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	3.00 (0.118)
* *	1825	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	6.35 (0.250)
	2220	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	5.00 (0.197)
→ D5 <	2225	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	6.35 (0.250)

Dimensions in millimeters (inches)

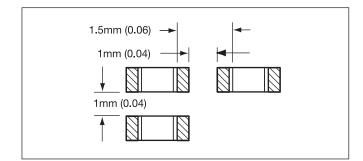
Component Pad Design

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

· Pad width equal to component width. It is permissible to

decrease this to as low as 85% of component width but it is not advisable to go below this.

- Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.


$\begin{array}{c|c} & \bullet \\ & D2 \\ & D2 \\ & \bullet \\ & D2 \\ & D2 \\ & D2 \\ & D2 \\ & D2 \\ & D2 \\ & \bullet \\ & D4 \\ & \bullet \\ & D4 \\ & \bullet \\ & D4 \\ & \bullet \\ & D4 \\ & \bullet \\ & D5 \\ & \bullet \\ & \bullet \\ & D5 \\ & \bullet \\$

WAVE SOLDERING

Case Size	D1	D2	D3	D4	D5
0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03
0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05
1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06

Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

Preheat & Soldering

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.

For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult KYOCERA AVX.

Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

KUDECERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Surface Mounting Guide **Recommended Soldering Profiles**

🔇 KYOCERA

REFLOW SOLDER PROFILES

KYOCERA AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/ JEDECJ- STD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260°C max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems.

Preheat:

The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125°C may be rapid, but from that point (2-3)°C/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180°C).

Reflow:

In the reflow phase, the maximum recommended time > 230°C is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250°C, (see wetting balance chart opposite) but products are qualified to 260°C max. Please reference individual product datasheets for maximum limits

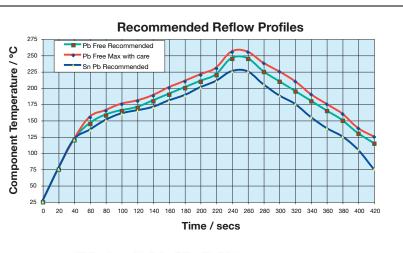
Cool Down:

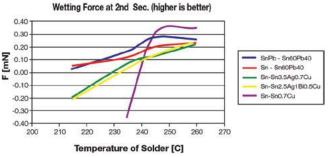
Cool down should not be forced and 6°C/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet.

WAVE SOLDER PROFILES

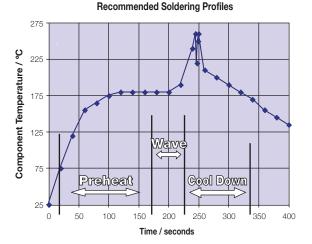
For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260°C max recommended for SnPb systems.

Preheat:


This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated.


Wave:

250°C - 260°C recommended for optimum solderability.


Cool Down:

As with reflow solder, cool down should not be forced and 6°C/sec is recommended. Any air knives at the end of the 2nd wave should be heated

IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint.

🛿 KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 12NA

Surface Mounting Guide MLC Chip Capacitors

APPLICATION NOTES

Storage

The components should be stored in their "as received packaging" where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity < 70% RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.

Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at $245^{\circ}C$ +/- $5^{\circ}C$ for 5 +0/-0.5 seconds.

Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

Termination Type	Solder Tin/	Solder	Immersion
	Lead/Silver	Temp °C	Time Seconds
Nickel Barrier	60/40/0	260 ± 5	30 ± 1

Lead-Free Wave Soldering

The recommended peak temperature for lead-free wave soldering is 250° C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- A. The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- B. Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

Preheat

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. KYOCERA AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

Cleaning

Flux residues may be hygroscopic or acidic and must be removed. KYOCERA AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

Prevention of Metallic Migration

Note that when components with Sn plating on the end terminations are to be used in applications that are likely to experience conditions of high humidity under bias voltage, we strongly recommend that the circuit boards be conformally coated to protect the Sn from moisture that might lead to migration and eventual current leakage.

When using Capacitor Arrays we recommend that there is no differential in applied voltage between adjacent elements.

Surface Mounting Guide

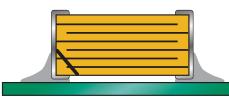
MLC Chip Capacitors

POST SOLDER HANDLING

Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.

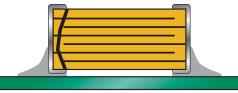
Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.

Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:


Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

COMMON CAUSES OF MECHANICAL CRACKING

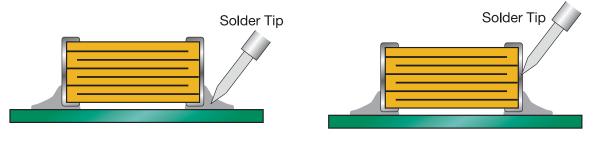
The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v-cutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.


A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.

Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.

KYOCERa

Type A: Angled crack between bottom of device to top of solder joint.

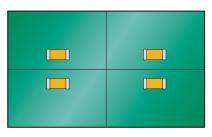


Type B: Fracture from top of device to bottom of device.

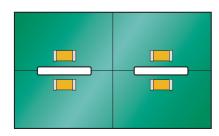
REWORKING OF MLCS

Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. KYOCERA AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.

However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300°C. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.



Preferred Method - No Direct Part Contact



PCB BOARD DESIGN

To avoid many of the handling problems, KYOCERA AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, KYOCERA AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located.

No Stress Relief for MLCs

Routed Cut Line Relieves Stress on MLC

KIDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

FOLLOW US: 🖸 🗹 🖬 🗅

VISIT US AT WWW.KYOCERA-AVX.COM

North America Tel: +1 864-967-2150 **Europe** Tel: +44 1276-697000

Asia Tel: +65 6286-7555

Japan Tel: +81 740-321250

Central America Tel: +55 11-46881960