

Symbol	Farameter		Raunys	Units	
V _{DSS}	Drain to Source Voltage		100	V	
V _{GS}	Gate to Source Voltage	±16	V		
1	Drain Current - Continuous (V_{GS} =10) (Note 1) T_{C} = 25°C		39	Α	
I _D	Pulsed Drain Current	T _C = 25°C	See Figure4		
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	267	mJ	
P _D	Power Dissipation		183	W	
	Derate above 25°C		1.22	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	°C	
$R_{\theta JC}$	Thermal Resistance Junction to Case		0.82	°C/W	
$R_{\theta JA}$	Maximum Thermal Resistance Junction to Ambient	(Note 3)	43	°C/W	

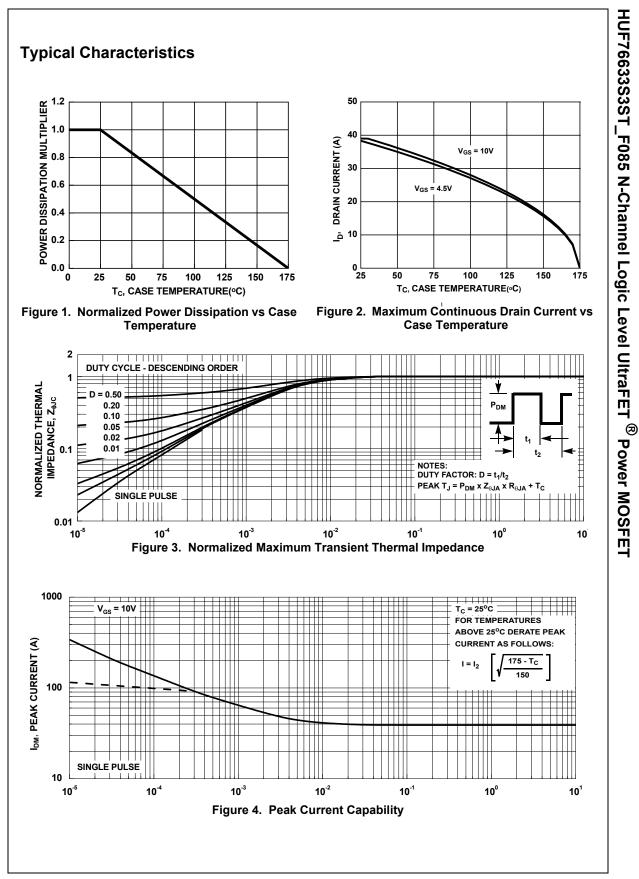
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
HUF76633S3ST	HUF76633S3ST_F085	TO-263AB	330mm	24mm	800 units

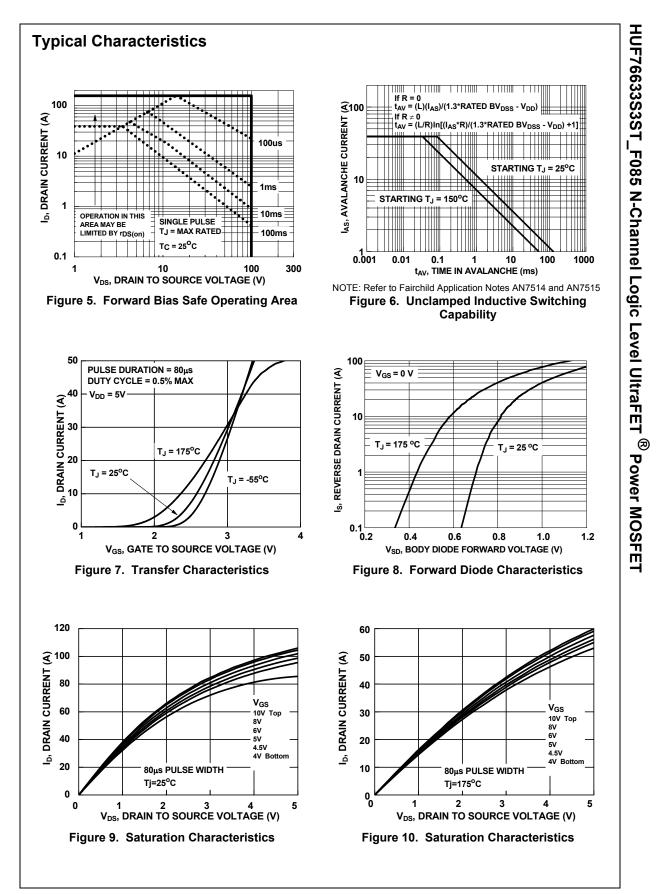
Notes:

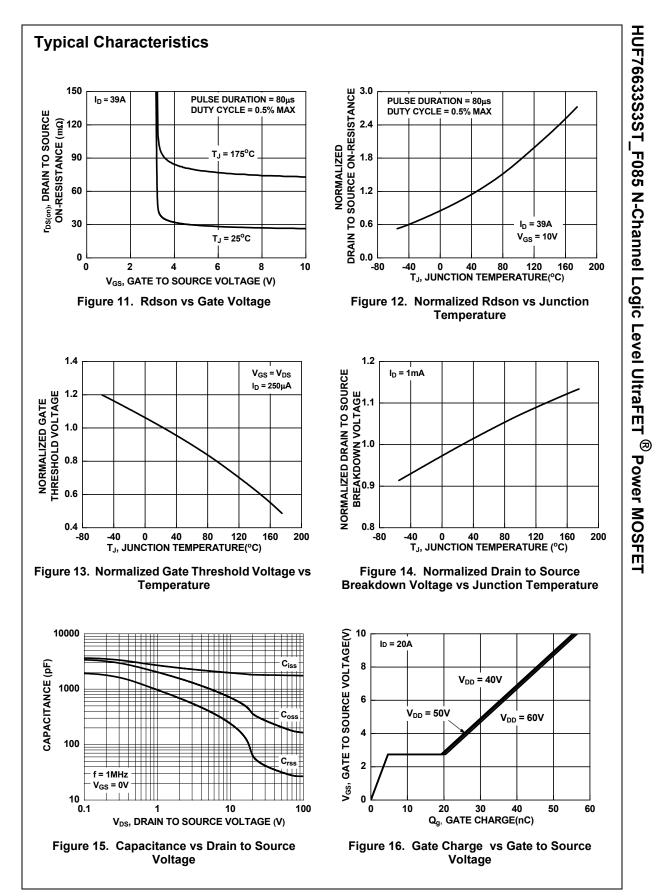
1: Current is limited by bondwire configuration. 2: Starting $T_J = 25^{\circ}$ C, L = 0.55mH, I_{AS} = 31.2A, V_{DD} = 100V during inductor charging and V_{DD} = 0V during time in avalanche 3: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

Symbol	Parameter	Test	Conditions	Min	Тур	Мах	Units
Off Cha	racteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V		100	-	-	V
	Drain to Source Lookage Current	V _{DS} =100V,	T _J = 25 ^o C	-	-	1	μA
IDSS	Drain to Source Leakage Current	$V_{GS} = 0V$	T _J = 175 ^o C(Note 4)	-	-	1	mA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±16V		-	-	±100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA		1.0	1.6	3.0	V
V _{GS(th)}	Gate to Source Threshold Voltage			1.0	1.6	3.0	V
r _{DS(on)}	Drain to Source On Resistance	$I_{\rm D} = 39A,$	$T_{\rm J} = 25^{\circ}C$	-	28	35	mΩ
		$V_{GS} = 10V$ $I_D = 27A,$ $V_{GS} = 4.5V$	$T_{J} = 175^{\circ}C(Note 4)$	-	76	95	mΩ
20(01)					31	37	mΩ
		V_{GS} = 4.5V T_{J} = 175°C(Note 4)			76	91	mΩ
C _{iss}	c Characteristics			-	1810	-	pF
C _{oss}	Output Capacitance	f = 1MHz	GS 0 V ,	-	304	-	pF
C _{rss}	Reverse Transfer Capacitance			-	48	-	pF
Rg	Gate Resistance	f = 1MHz		-	1.9	-	Ω
Q _{g(ToT)}	Total Gate Charge	V _{GS} = 0 to 10		-	56	63	nC
Q _{g(th)}	Threshold Gate Charge	V_{GS} = 0 to 2V	/ I _D = 20A	-	3.3	4	nC
	Gate to Source Gate Charge			-	4.7	-	nC
Q _{gs}		1		_	15	_	nC


t _{on}	Turn-On Time		-	-	34	ns
t _{d(on)}	Turn-On Delay Time		-	8	-	ns
t _r	Rise Time	V _{DD} = 50V, I _D = 20A,	-	16	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10V, R _{GEN} = 8.2Ω	-	46	-	ns
t _f	Fall Time		-	6	-	ns
t _{off}	Turn-Off Time		-	-	59	ns

Drain-Source Diode Characteristics


V _{SD}	Source to Drain Diode Voltage	I _{SD} = 27A, V _{GS} = 0V	-	-	1.25	V
	Source to Drain Diode Voltage	I _{SD} = 13.5A, V _{GS} = 0V	-	-	1.0	V
T _{rr}	Reverse Recovery Time	I _F = 20A, dI _{SD} /dt = 100A/μs,	-	86	93	ns
Q _{rr}	Reverse Recovery Charge	V _{DD} =80V	-	275	320	nC


Notes:

4: The maximum value is specified by design at T_J = 175°C. Product is not tested to this condition in production.

HUF76633S3ST_F085 Rev. C1

HUF76633S3ST_F085 Rev. C1

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. I64

⌀