

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

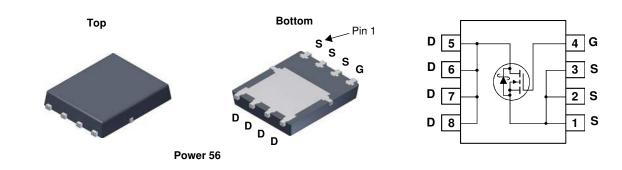
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

N-Channel PowerTrench[®] SyncFETTM 25 V, 130 A, 1.2 m Ω

Features

- Max $r_{DS(on)} = 1.2 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 35 \text{ A}$
- Max $r_{DS(on)} = 1.65 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 31 \text{ A}$
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- SyncFET Schottky Body Diode
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

The FDMS7556S has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance. This device has the added benefit of an efficient monolithic Schottky body diode.

Applications

- Synchronous Rectifier for Synchronous Buck Converters
- Notebook
- Server
- Telecom
- High Efficiency DC-DC Switch Mode Power Supplies

MOSFET Maximum Ratings TA = 25 °C unless otherwise noted

V				Ratings	Units	
V _{DS}	Drain to Source Voltage			25	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
	Drain Current -Continuous (Package limited) T _C = 25 °C			130		
	-Continuous (Silicon limited) T _C = 25 °C			222	Α	
D	-Continuous	T _A = 25 °C	(Note 1a)	35	A	
	-Pulsed			200		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	312	mJ	
D	Power Dissipation	T _C = 25 °C		96	w	
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	1.3	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1a)	50	0/00

Package Marking and Ordering Information

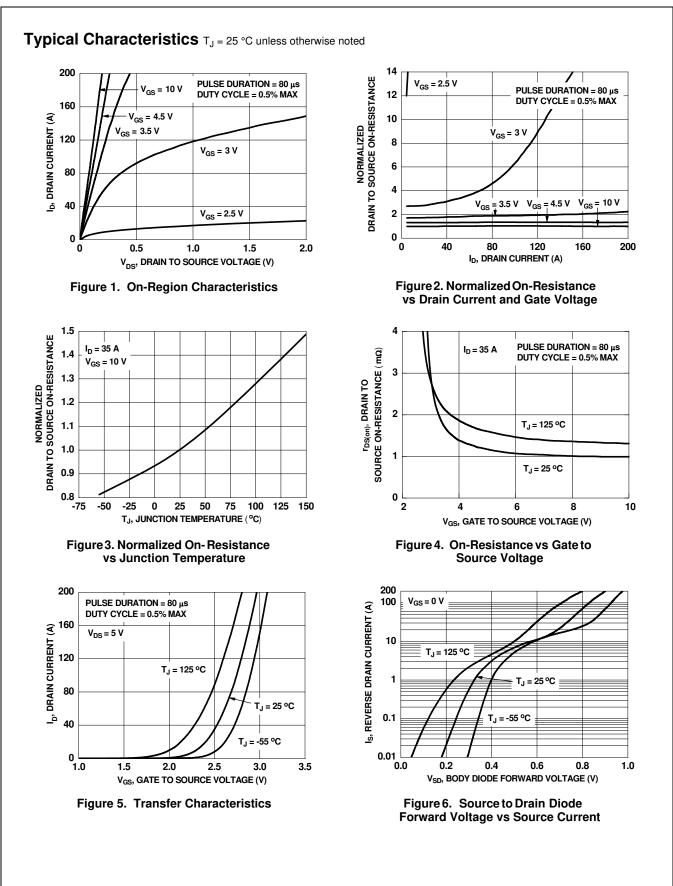
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7556S	FDMS7556S	Power 56	13 "	12 mm	3000 units

October 2014

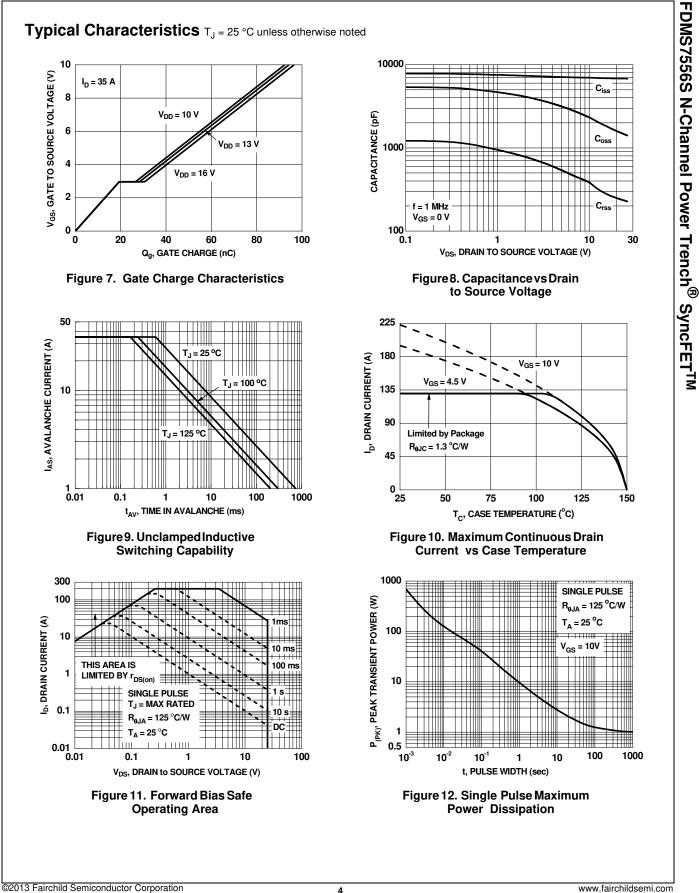
FDMS7556S
N-Channel P
ower Trench
[®] SyncFET TM

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} BV_{DSS} & C \\ \hline \Delta BV_{DSS} & \overleftarrow{C} \\ \hline \Delta T_{J} & \overleftarrow{C} \\ I_{DSS} & \overleftarrow{C} \\ I_{GSS} & \overleftarrow{C} \\ \hline \mathbf{On \ Charact} \\ \mathbf{V}_{GS(th)} & \overleftarrow{C} \\ \hline \Delta T_{J} & \overleftarrow{T} \\ \hline \mathbf{T}_{DS(on)} & \overleftarrow{S} \\ \end{array}$	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current, Forward Ceristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage	$I_{D} = 10 \text{ mA, referenced to } 25 \text{ °C}$ $V_{DS} = 20 \text{ V, } V_{GS} = 0 \text{ V}$ $V_{GS} = 20 \text{ V, } V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_{D} = 1 \text{ mA}$				mV/°C μA
	$\begin{array}{c c} \underline{ABV}_{DSS} & E \\ \overline{\Delta T_J} & C \\ \underline{DSS} & Z \\ \underline{GSS} & C \\ \hline \begin{array}{c} Dn \ Characte \\ \overline{AGS(th)} & C \\ \overline{\Delta T_J} & T \\ \overline{DS(on)} & S \\ \end{array}$	Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current, Forward Ceristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage	$I_{D} = 10 \text{ mA, referenced to } 25 \text{ °C}$ $V_{DS} = 20 \text{ V, } V_{GS} = 0 \text{ V}$ $V_{GS} = 20 \text{ V, } V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_{D} = 1 \text{ mA}$				mV/°C μA
	$\begin{array}{c c} BV_{DSS} & E \\ \overline{\Delta T_J} & C \\ DSS & Z \\ GSS & C \\ \hline \begin{array}{c} On \ Charact \\ \overline{CS(th)} & C \\ \overline{\Delta T_J} & T \\ DS(on) & S \\ \hline \end{array}$	Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current, Forward Ceristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage	$I_{D} = 10 \text{ mA, referenced to } 25 \text{ °C}$ $V_{DS} = 20 \text{ V, } V_{GS} = 0 \text{ V}$ $V_{GS} = 20 \text{ V, } V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_{D} = 1 \text{ mA}$	1.2			μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} & & & z \\ \hline DDSS & & Z \\ \hline GSS & & C \\ \hline \begin{array}{c} On \ Characte} \\ \hline \begin{array}{c} AV_{GS(th)} & C \\ \hline \Delta T_J & T \\ \hline DS(on) & S \\ \hline \end{array}$	Zero Gate Voltage Drain Current Gate to Source Leakage Current, Forward Ceristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage	$V_{DS} = 20 V, V_{GS} = 0 V$ $V_{GS} = 20 V, V_{DS} = 0 V$ $V_{GS} = V_{DS}, I_D = 1 mA$	1.2			μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \hline GSS & C \\ \hline GSS & C \\ \hline Dn Charact \\ \hline V_{GS(th)} & C \\ \hline \Delta V_{GS(th)} & C \\ \hline \Delta T_J & T \\ \hline \sigma_{DS(on)} & S \\ \hline \end{array}$	Gate to Source Leakage Current, Forward eristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	1.2			
A Characteristics $3S(th)$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$ 1.21.63.0V $V_{GS(th)}$ Gate to Source Threshold Voltage $I_D = 10 \text{ mA}$, referenced to $25 ^{\circ}\text{C}$ -5mV/~C $V_{GS}(n)$ Static Drain to Source On Resistance $V_{GS} = 10 \text{ V}$, $I_D = 35 \text{ A}$ 0.951.2 $V_{GS} = 10 \text{ V}$, $I_D = 35 \text{ A}$ 0.951.2mV/~C $V_{GS} = 10 \text{ V}$, $I_D = 35 \text{ A}$ 1.31.65mΩ $V_{GS} = 10 \text{ V}$, $I_D = 35 \text{ A}$ 212S $remain Characteristics$ $V_{DS} = 5 \text{ V}$, $I_D = 35 \text{ A}$ 212S $remain Characteristics$ $V_{DS} = 13 \text{ V}$, $V_{GS} = 0 \text{ V}$, 6740 8965 pF ss Input Capacitance $V_{DS} = 13 \text{ V}$, $V_{GS} = 0 \text{ V}$, 114 475 pF ss Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 314 475 pF ss Reverse Transfer Capacitance $V_{DS} = 13 \text{ V}$, $V_{GS} = 0 \text{ V}$, 918 ns $vitching Characteristics$ $v_{DD} = 13 \text{ V}$, $I_D = 35 \text{ A}$, $9 \text{ 18} \text{ ns}$ $sign Turn-Off Delay Time$ $V_{GS} = 0 \text{ V to 10 V}$ $95 \text{ 133} \text{ nC}$ $sign Turn-Off Delay Time$ $V_{GS} = 0 \text{ V to 4.5 V}$ $43 \text{ 60} \text{ nC}$ $sign Turn-Off Delay Time$ $V_{GS} = 0 \text{ V to 4.5 V}$ $43 \text{ 60} \text{ nC}$ $sign Turn-Off Delay Time$ $V_{GS} = 0 \text{ V to 4.5 V}$ $43 \text{ 60} \text{ nC}$ $sign Turn-Off Delay Time$ $V_{GS} = 0 \text{ V to 4.5 V}$ $43 \text{ 60} \text{ nC}$ $sign Turn-Off Del$	$\begin{array}{c c} \textbf{Dn Charact}\\ \hline \textbf{C}_{GS(th)} & \textbf{C}\\ \hline \Delta V_{GS(th)} & \textbf{C}\\ \hline \Delta T_J & \textbf{T}\\ \hline \textbf{D}_{S(on)} & \textbf{S} \end{array}$	Cate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	1.2		100	nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} V_{\rm GS(th)} & {\rm C}\\ \Delta V_{\rm GS(th)} & {\rm C}\\ \Delta T_{\rm J} & {\rm T}\\ \\ DS(on) & {\rm S} \end{array}$	Gate to Source Threshold Voltage Gate to Source Threshold Voltage		1.2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{\Delta V_{GS(th)}}{\Delta T_J} \qquad T$ $r_{DS(on)} \qquad S$	Gate to Source Threshold Voltage		1.2	10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{\Delta V_{GS(th)}}{\Delta T_J} \qquad T$ $r_{DS(on)} \qquad S$	•			1.6	3.0	V
	20(01)				-5		mV/°C
	20(01)		V _{GS} = 10 V, I _D = 35 A		0.95	1.2	
V _{GS} = 10 V, I _D = 35 A, T _J = 125 °C 1.2 1.6 S Forward Transconductance V _{DS} = 5 V, I _D = 35 A 212 S Input Capacitance V _{DS} = 5 V, I _D = 35 A 212 S Input Capacitance V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHz 6740 8965 pF Input Capacitance V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHz 1940 2580 pF Input Capacitance I		Static Drain to Source On Resistance			1.3	1.65	mΩ
sForward Transconductance $V_{DS} = 5 \text{ V}, \text{ I}_{D} = 35 \text{ A}$ 212S/namic CharacteristicsssInput Capacitance $V_{DS} = 13 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ $6740 8965 pF$ ssOutput Capacitance $f = 1 \text{ MHz}$ $314 475 pF$ aGate Resistance $0.6 1.3 \Omega$ vitching Characteristicson)Turn-On Delay TimeRise Time $V_{DD} = 13 \text{ V}, \text{ I}_D = 35 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ off)Turn-Off Delay Time $488 77 ns$ aTotal Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}, \text{ V}_{DD} = 13 \text{ V}, \text{ I}_D = 35 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ aTotal Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}, \text{ V}_{DD} = 13 \text{ V}, \text{ I}_D = 35 \text{ A}, \text{ I}$	-		V _{GS} = 10 V, I _D = 35 A, T _J = 125 °C		1.2	1.6	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g _{FS} F	Forward Transconductance			212		S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic Cl	haracteristics			+		
DussOutput Capacitance 1940 2580 pFssReverse Transfer Capacitance $f = 1 \text{ MHz}$ 314 475 pFgGate Resistance 0.6 1.3 Ω vitching Characteristicson)Turn-On Delay TimeRise Time $V_{DD} = 13 \text{ V}, I_D = 35 \text{ A},$ 9 18 nsoff)Turn-Off Delay Time $V_{GS} = 0 \text{ V to } 10 \text{ V},$ 95 133 nC off)Total Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V},$ 95 133 nC gTotal Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V},$ $P_D = 13 \text{ V},$ 433 60 nC gsGate to Source Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V},$ $I_D = 35 \text{ A},$ 18.6 nC gadGate to Drain "Miller" Charge rC 8.8 nC	-				6740	8965	۶F
ssReverse Transfer Capacitance1 - 1 Wit2314475pFgGate Resistance0.61.3 Ω vitching Characteristicson)Turn-On Delay TimeRise Time $V_{DD} = 13 V, I_D = 35 A,$ 918nsoff)Turn-Off Delay Time $V_{GS} = 10 V, R_{GEN} = 6 \Omega$ 4877nsFall Time $V_{GS} = 0 V to 10 V$ 95133nCgTotal Gate Charge $V_{GS} = 0 V to 10 V$ $V_{DD} = 13 V$ 95133nCgGate to Source Gate Charge $V_{GS} = 0 V to 4.5 V$ $V_{DD} = 13 V$ 4360nCgdGate to Drain "Miller" Charge $I_D = 35 A$ 18.6nCrain-Source Diode Characteristics							
aGate Resistance0.61.3 Ω vitching Characteristicson)Turn-On Delay Time $V_{DD} = 13 \text{ V}, I_D = 35 \text{ A},$ 918nsoff)Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 4877nsfall Time5.311ns5.311nsqTotal Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ 95133nCgsGate to Source Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 13 \text{ V}$ 4360nCgdGate to Drain "Miller" Charge $I_D = 35 \text{ A}$ 18.6nCnCrain-Source Diode Characteristics			_f = 1 MHz				
vitching Characteristicson)Turn-On Delay Time $V_{DD} = 13 \text{ V}, I_D = 35 \text{ A},$ 918nsoff)Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 4877nsfall Time5.311nsgTotal Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ 95133nCgsGate to Source Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 13 \text{ V}$ 4360nCgdGate to Drain "Miller" Charge $I_D = 35 \text{ A}$ 18.6nCgrain-Source Diode Characteristicsstate state s							
NinRise Time $V_{DD} = 13 \text{ V}, I_D = 35 \text{ A},$ 918nsoff)Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 4877nsFall Time5.311nsoTotal Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ 95133nCoTotal Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 13 \text{ V}$ 4360nCoGate to Source Gate Charge $I_D = 35 \text{ A}$ 18.6nCodGate to Drain "Miller" Charge8.8nCcrain-Source Diode Characteristicssecondsecondsecond							1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,	-				
Fall Time5.311nsTotal Gate Charge $V_{GS} = 0 \vee to 10 \vee$ 95133nCTotal Gate Charge $V_{GS} = 0 \vee to 4.5 \vee$ $V_{DD} = 13 \vee$ 4360nCgsGate to Source Gate Charge $I_D = 35 \wedge$ 18.6nCgdGate to Drain "Miller" Charge8.8nC	1				-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a(o)	-	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		-		ns
Total Gate Charge $V_{GS} = 0 V \text{ to } 4.5 V$ $V_{DD} = 13 V$ 4360nC J_{3S} Gate to Source Gate Charge $I_D = 35 A$ 18.6nC J_{2d} Gate to Drain "Miller" Charge8.8nCrain-Source Diode Characteristics	1						ns
Js Gate to Source Gate Charge ID = 35 Å 18.6 nC Jd Gate to Drain "Miller" Charge 8.8 nC	9		$V_{GS} = 0 V$ to 10 V			133	nC
Instruction Instruction Image Image Ima	9	-				60	nC
ain-Source Diode Characteristics	90		I _D = 35 A		18.6		nC
	Q _{gd}	Sate to Drain "Miller" Charge			8.8		nC
$V_{\text{res}} = 0 V \downarrow 1 = 0 \text{ A} \qquad (\text{Note } 0) \qquad 0.027 \qquad 0.7$	Drain-Sourc	ce Diode Characteristics					
Source to Drain Diode Forward Voltage $V_{GS} = 0.7, I_S = 2.4$ (Note 2) 0.37 0.7 V		Source to Drain Diade, Ecoward Valtage	$V_{GS} = 0 V, I_S = 2 A$ (Note 2)		0.37	0.7	V
D Source to Drain Diode Forward Voltage		source to Drain Diode Forward voltage	$V_{GS} = 0 V, I_S = 35 A$ (Note 2)		0.74	1.2	v
V _{GS} = 0 V, I _S = 35 A (Note 2) 0.74 1.2	V _{SD} S				4.4		
VGS = 0 V, IS = 35 A (Note 2) 0.74 1.2 Beverse Becovery Time 44 71 ns		Reverse Recovery Time	I 35 A di/dt _ 300 A/us		44	71	ns
	Q _g T Q _g T Q _{gs} C Q _{gd} C Drain-Source	Total Gate Charge Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge Ce Diode Characteristics	$V_{GS} = 0 V \text{ to } 4.5 V$ $I_D = 35 A$ $V_{GS} = 0 V, I_S = 2 A$ (Note 2)		95 43 18.6 8.8 0.37		133 60 0.7
$v_{GS} = 0 V, I_S = 35 A$ (Note 2) 0.74 1.2	/ _{SD}				4.4	71	
V _{GS} = 0 V, I _S = 35 A (NOLE 2) 0.74 1.2	F	Reverse Recovery Time	$I_{\rm r} = 35 \Delta di/dt = 300 \Delta/uc$		44	71	ns

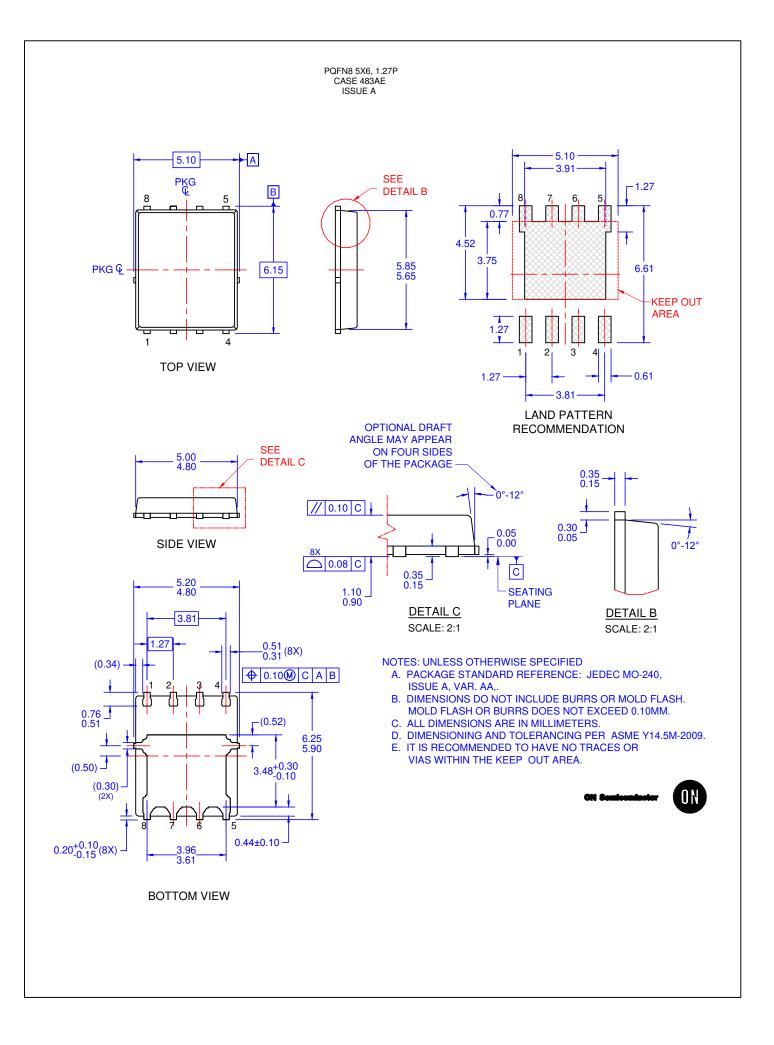
2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


3. E_{AS} of 312 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 25 A, V_{DD} = 23 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 38 A.

4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.


©2013 Fairchild Semiconductor Corporation FDMS7556S Rev.C4

www.fairchildsemi.com


FDMS7556S N-Channel Power Trench[®] SyncFETTM

©2013 Fairchild Semiconductor Corporation FDMS7556S Rev.C4 www.fairchildsemi.com

FDMS7556S Rev.C4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative