LDMOS 2-stage integrated Doherty MMIC

Rev. 1 — 11 November 2022

1. Product profile

1.1 General description

The B10G2327N55D is a 2-stage fully integrated asymmetrical Doherty MMIC solution using Ampleon's state of the art LDMOS technology. The carrier and peaking device, input splitter, output combiner and pre-match are integrated in a single package. This device is perfectly suited as general purpose driver or mMIMO final in the frequency range from 2300 MHz to 2700 MHz. Available in PQFN outline.

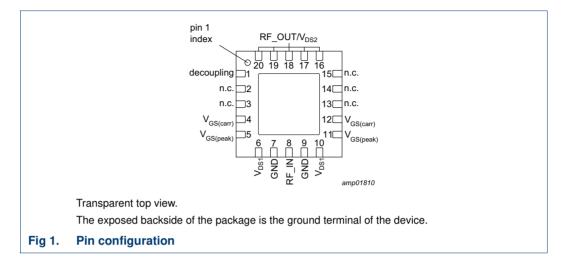
Table 1. Application performance

Typical RF performance at $T_{case} = 25 \ ^{\circ}C$; $I_{Dq} = 49 \ mA$ (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.31 \ V$. Test signal: 1-carrier LTE 20 MHz; PAR = 7.6 dB at 0.01 % probability CCDF measured in an Ampleon $f = 2600 \ MHz$ integrated Doherty application circuit.

Test signal	f	V _{DS}	P _{L(AV)}	G _p	ησ
	(MHz)	(V)	(W)	(dB)	(%)
1-carrier LTE 20 MHz PAR = 7.6 dB	2600	28	2.51	29.9	35.6

1.2 Features and benefits

- Integrated input splitter
- Integrated output combiner
- Source impedance 50 Ω
- Pre-matched output
- High efficiency by asymmetric Doherty design
- Designed for large RF and instantaneous bandwidth operation, covering frequency from 2300 MHz to 2700 MHz
- Independent control of carrier and peaking bias
- Integrated ESD protection
- High power gain
- For RoHS compliance see the product details on the Ampleon website


1.3 Applications

RF power MMIC for multi-carrier and multi-standard GSM, W-CDMA and LTE base stations in the 2300 MHz to 2700 MHz frequency range

LDMOS 2-stage integrated Doherty MMIC

2. Pinning information

2.1 Pinning

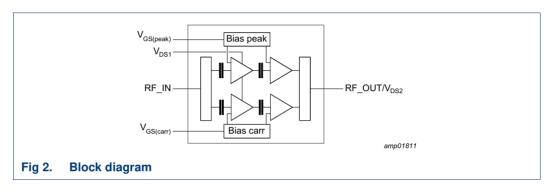
2.2 Pin description

Table 2. Pin description

Symbol	Pin	Description				
decoupling	1	video-lead for decoupling				
n.c.	2	not connected				
n.c.	3	not connected				
V _{GS(carr)}	4	gate-source voltage of carrier [1]				
V _{GS(peak)}	5	gate-source voltage of peaking [2]				
V _{DS1}	6	drain-source voltage of driver stages 3				
GND	7	RF ground				
RF_IN	8	RF input				
GND	9	RF ground				
V _{DS1}	10	drain-source voltage of driver stages 3				
V _{GS(peak)}	11	gate-source voltage of peaking [2]				
V _{GS(carr)}	12	gate-source voltage of carrier [1]				
n.c.	13, 14, 15	not connected				
RF_OUT/V _{DS2}	16	RF output / drain-source voltage of final stages				
RF_OUT/V _{DS2}	17	RF output / drain-source voltage of final stages				
RF_OUT/V _{DS2}	18	RF output / drain-source voltage of final stages				
RF_OUT/V _{DS2}	19	RF output / drain-source voltage of final stages				
RF_OUT/V _{DS2}	20	RF output / drain-source voltage of final stages				
GND	flange	RF ground				

[1] Pins connected together.

[2] Pins connected together.


 $[3] \quad I_{max(DC)} \leq 300 \text{ mA}.$

LDMOS 2-stage integrated Doherty MMIC

3. Ordering information

Table 3. Ordering information								
Package name	Orderable part number	12NC		Min. orderable quantity (pieces)				
SOT1462-1	B10G2327N55DZ	9349 605 86515	TR13; 500-fold; 16 mm; dry pack	500				

4. Block diagram

5. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage		-0.5	+65	V
V _{GS}	gate-source voltage		-0.5	+13	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature	[1]	-	200	°C

[1] Continuous use at maximum temperature will affect the reliability. For details refer to the online MTF calculator.

6. Thermal characteristics

Table 5. Thermal characteristics

 $V_{DS} = 28 V$; $I_{Dq} = 49 mA$ (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} = -0.31 V$.

Symbol	Parameter	Conditions		Value	Unit
R _{th(j-c)}	thermal resistance from junction to case	$T_{case} = 90 \ ^{\circ}C; P_{L} = 2.51 \ W$	[1]	4.5	K/W
		$T_{case} = 90 \ ^{\circ}C; P_{L} = 7.94 \ W$	[1]	3.1	K/W
		$T_{case} = 90 \ ^{\circ}C; P_{L} = 10 \ W$	[1]	2.8	K/W

[1] When operated with a 1-carrier W-CDMA with PAR = 9.9 dB.

Unit

٧ nΑ

nA

μA

μA

1.4

LDMOS 2-stage integrated Doherty MMIC

Characteristics 7.

Table 6 DC characteristics

Symbol	Parameter	Conditions	Min	Тур	Ма
Carrier					_
V _{GSq}	gate-source quiescent voltage	$V_{DS} = 28 \text{ V}; I_D = 42 \text{ mA}$	1.8	2.2	2.5
I _{GSS}	gate leakage current	$V_{GS} = 9 V; V_{DS} = 0 V$	-	-	32
Peaking					_
I _{GSS}	gate leakage current	$V_{GS} = 9 V; V_{DS} = 0 V$	-	-	32
Final sta	ges				
I _{DSS}	drain leakage current	$V_{GS} = 0 V; V_{DS} = 28 V$	-	-	1.4
Driver st	ades	-			

Table 7. **RF** characteristics

IDSS

drain leakage current

Typical RF performance at $T_{case} = 25 \ ^{\circ}C$; $V_{DS} = 28 \ V$; $I_{Dq} = 42 \ mA$ (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.4 \ V$; $P_{L(AV)} = 8 \ W$; $f = 2500 \ MHz$ measured in an Ampleon production circuït.

 $V_{GS} = 0 V; V_{DS} = 28 V$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
Test signal: pulsed CW [1]								
G _p	power gain		24.8	27.5	31.2	dB		
η _D	drain efficiency	P _L = 8 W (39 dBm)	35	43	-	%		
		$P_L = P_{L(3dB)}$	42	48	-	%		
RL _{in}	input return loss		-	-	-10	dB		
P _{L(3dB)}	output power at 3 dB gain compression		45.9	46.8	-	dBm		

[1] Pulsed CW power sweep measurement (δ = 10 %, t_p = 100 µs).

B10G2327N55D

LDMOS 2-stage integrated Doherty MMIC

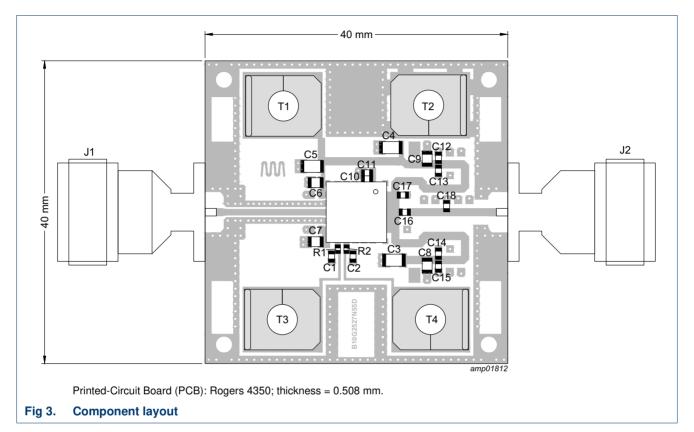
8. Application information

8.1 Typical performance as driver application

Table 8. Typical performance

 $T_{case} = 25 \ ^{\circ}C; V_{DS} = 28 \ V; I_{Dq} = 49 \ mA \ (carrier); V_{GSq(peaking)} = V_{GSq(carrier)} - 0.31 \ V.$ Test signal: 1-carrier W-CDMA; PAR = 9.9 dB measured in an Ampleon 2500 MHz to 2700 MHz frequency band application circuit.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
P _{L(1dB)}	output power at 1 dB gain compression	f = 2600 MHz	[1]	-	46.4	-	dBm
P _{L(3dB)}	output power at 3 dB gain compression	f = 2600 MHz	f = 2600 MHz [1] -		47.3	-	dBm
$\phi_{s21}/\phi_{s21}(norm)$	normalized phase response	at 1 dB compression point; f = 2600 MHz	[2]	-	-8.9	-	0
η _D	drain efficiency	13.5 dB OBO (P _{L(AV)} = 34 dBm); f = 2600 MHz		-	35.7	-	%
G _p	power gain	$P_{L(AV)} = 34 \text{ dBm}; f = 2600 \text{ MHz}$		-	30	-	dB
B _{video}	video bandwidth	P _{L(AV)} = 34 dBm; f = 2600 MHz	[3]	-	>400	-	MHz
G _{flat}	gain flatness	P _{L(AV)} = 34 dBm; f = 2500 MHz to 2700 MHz		-	0.3	-	dB
ACPR _{5M}	adjacent channel power ratio (5M)	P _{L(AV)} = 34 dBm; f = 2600 MHz		-	-38.5	-	dBc
$\Delta G / \Delta T$	gain variation with temperature	f = 2600 MHz	[4]	-	0.05	-	dB/°C
К	Rollett stability factor	$T_{case} = -40 \text{ °C to } +125 \text{ °C}; f = 0.2 \text{ GHz}$ to 6 GHz	[4]	-	>1	-	


[1] Pulsed CW power sweep measurement (δ = 10 %; t_p = 100 µs).

[2] 25 ms CW power sweep measurement.

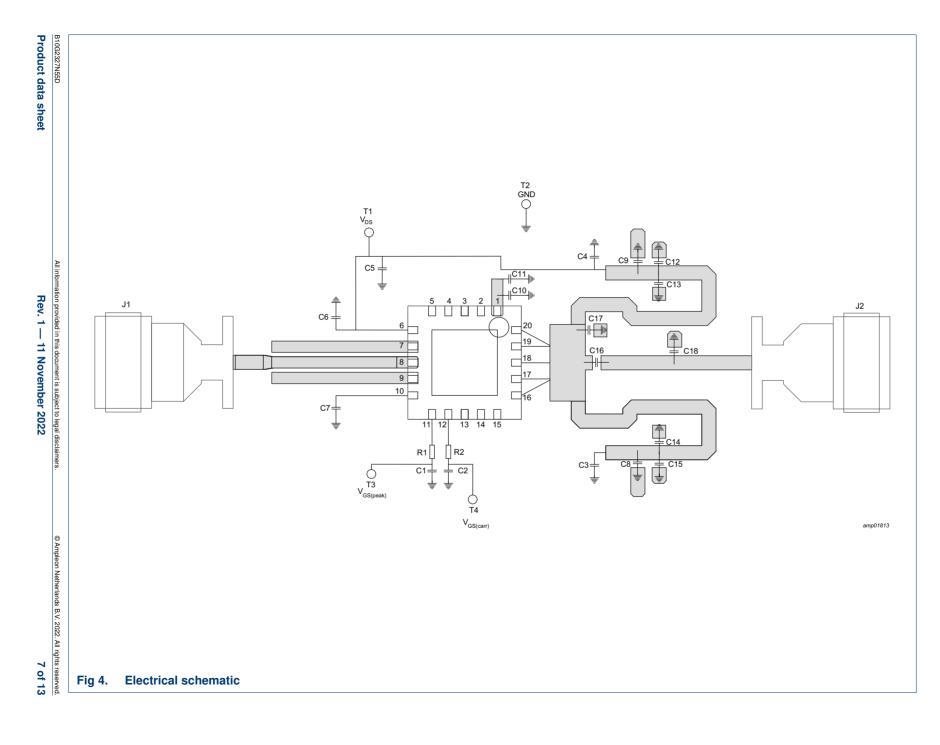
[3] Set to obtain IMD3 = -32 dBc.

[4] S-parameters measured with broadband demo board.

LDMOS 2-stage integrated Doherty MMIC

8.2 PCB layout and electrical schematic

 Table 9.
 Demo test circuit list of components


See Figure 3 for component layout.

Component	Description	Value	Remarks
C1, C2	multilayer ceramic chip capacitor	4.7 μF, 6.3 V	Murata: GRM155R60J475ME47D
C3, C4, C5	multilayer ceramic chip capacitor	10 μF, 50 V	Murata: GRM21BR6YA106KE43
C6,C7,C8,C9	multilayer ceramic chip capacitor	1 μF, 50 V	Murata: C1608X5R1H105K080AB
C10, C11, C12, C13, C14, C15	multilayer ceramic chip capacitor	100 nF, 50 V	Murata: 06035C104KAT2A
C16	multilayer ceramic chip capacitor	6.8 pF, ± 0.1 %	Murata: GQM1875C2E6R8BB12
C17	multilayer ceramic chip capacitor	0.5 pF, ± 0.1 %	Murata: GQM1875C2E0R5BB12
C18	multilayer ceramic chip capacitor	0.9 pF, ± 0.1 %	Murata: GQM1875C2E0R9BB12
R1, R2	resistor	1 k Ω , ± 1 %, 100 mW	Multicomp Pro: MCSR06X1001FTL
J1	N Coaxial panel connector male		Radiall: R161.438.200
J2	N Coaxial panel connector female		Huber & Suhner: 23_N-50-0-16/133_NE
T1, T2, T3, T4	PCB terminal	6.35 mm x 0.81 mm, 4.1 mm	TE connectivity: 141879-1

AMPLEON

B10G2327N55D

8.3 Ruggedness in a Doherty operation

8.3.1 Output mismatch ruggedness

The B10G2327N55D is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: V_{DS} = 32 V; I_{Dq} = 49 mA (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.31$ V; P_i corresponding to $P_{L(3dB)} - 9$ dB under Z_S = 50 Ω load; f = 2700 MHz (1-carrier W-CDMA; PAR = 9.9 dB); T_{case} = 25 °C.

8.3.2 Wideband noise ruggedness

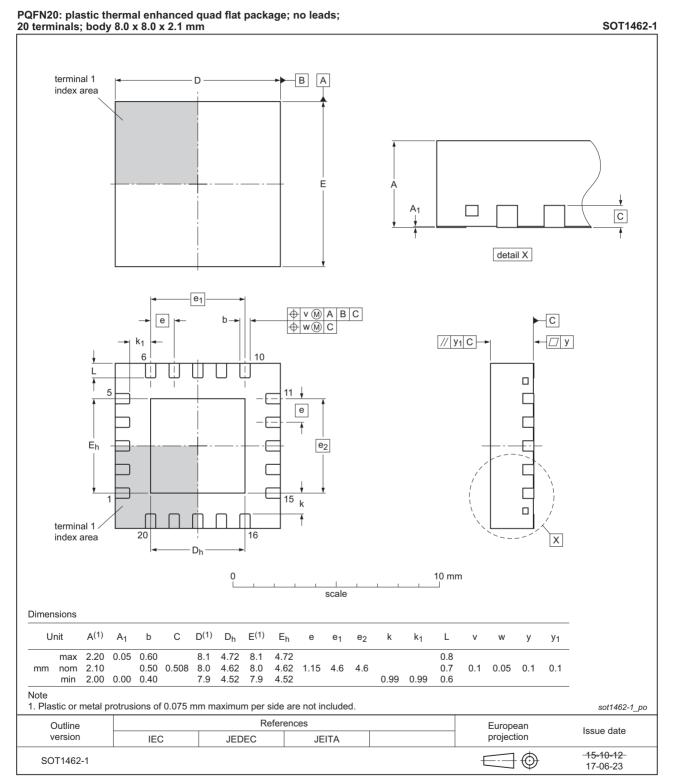
The B10G2327N55D is capable of withstanding an AWGN (Additive White Gaussian Noise) with 11.2 dB PAR, OBW (Occupied BandWidth) of 800 MHz, under the following conditions: $V_{DS} = 32$ V; $I_{Dq} = 49$ mA (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.31$ V; 3 dB P_i overdrive from $P_{L(AV)} = 34$ dBm; f = 2600 MHz as central frequency; $T_{case} = 25$ °C.

8.4 Impedance information

Table 10. Typical impedance for optimum Doherty operation for 2.3 GHz to 2.4 GHz band Measured load-pull data; test signal: pulsed CW; $T_{case} = 25 \ ^{\circ}C$; $V_{DS} = 28 \ V$; $I_{Dq} = 48 \ mA$ (carrier); $V_{GSa(peaking)} = V_{GSa(carrier)} - 0.25 \ V$; $t_p = 100 \ \mu s$; $\delta = 10 \ ^{\circ}$.

	tuned for optimu	tuned for optimum Doherty operation						
f	Z _L [1]	P _{L(1dB)}	G _{p(max)}	໗ _{add} [2]	໗ _{add} [3]			
(MHz)	(Ω)	(dBm)	(dB)	(%)	(%)			
2200	11.6 – j10.9	45.9	30.17	45.15	30.45			
2300	14.0 – j9.5	46.0	30.39	47.35	32.40			
2400	17.0 – j11.5	46.1	30.50	49.50	32.50			

- [1] Reference package plane.
- [2] At P_{L(1dB)}.
- [3] At 34 dBm.


Table 11. Typical impedance for optimum Doherty operation for 2.5 GHz to 2.7 GHz band Measured load-pull data; test signal: pulsed CW; $T_{case} = 25 \ ^{\circ}C$; $V_{DS} = 28 \ V$; $I_{Dq} = 49 \ mA$ (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.31 \ V$; $t_p = 100 \ \mu s$; $\delta = 10 \ ^{\circ}$.

	tuned for optimu	tuned for optimum Doherty operation						
f	ZL ^[1]	P _{L(1dB)}	G _{p(max)}	໗ _{add} [2]	໗ _{add} [3]			
(MHz)	(Ω)	(dBm)	(dB)	(%)	(%)			
2500	16.9 – j11.6	46.2	30.1	53.8	36.8			
2600	16.4 – j7.9	46.4	30.2	56.0	37.6			
2700	15.5 – j4.9	46.3	30.4	57.3	36.7			
2800	14.4 – j4.5	46.0	29.9	57.2	35.8			

- [1] Reference package plane.
- [2] At P_{L(1dB)}.
- [3] At 34 dBm.

LDMOS 2-stage integrated Doherty MMIC

9. Package outline

Fig 5. Package outline SOT1462-1 (PQFN20)

LDMOS 2-stage integrated Doherty MMIC

10. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

Table 12.ESD sensitivity

ESD model	Class
Charged Device Model (CDM); According to ANSI/ESDA/JEDEC standard JS-002	C2B 🛄
Human Body Model (HBM); According to ANSI/ESDA/JEDEC standard JS-001	1C 🛛

[1] CDM classification C2B is granted to any part that passes after exposure to an ESD pulse of 750 V.

[2] HBM classification 1C is granted to any part that passes after exposure to an ESD pulse of 1000 V.

11. Abbreviations

Table 13. Abbreviations				
Acronym	Description			
CCDF	Complementary Cumulative Distribution Function			
CW	Continuous Wave			
ESD	ElectroStatic Discharge			
GSM	Global System for Mobile Communications			
LDMOS	Laterally Diffused Metal Oxide Semiconductor			
LTE	Long Term Evolution			
MMIC	Monolithic Microwave Integrated Circuit			
mMIMO	massive Multiple Input Multiple Output			
MTF	Median Time to Failure			
OBO	Output Back Off			
PAR	Peak-to-Average Ratio			
RoHS	Restriction of Hazardous Substances			
VSWR	Voltage Standing Wave Ratio			
W-CDMA	Wideband Code Division Multiple Access			

12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
B10G2327N55D v.1	20221011	Product data sheet	-	-

13. Legal information

13.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.ampleon.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Ampleon sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Ampleon and its customer, unless Ampleon and customer have explicitly agreed otherwise in writing. An agreement according to which the functions and qualities of Ampleon products exceed those described in the Product data sheet is invalid.

13.3 Disclaimers

Maturity — After the relevant product(s) have passed the Release Gate in Ampleon's release process, Ampleon will confirm the final version in writing.

Limited warranty and liability — Ampleon uses its best efforts to keep the information in this document accurate and reliable. However, Ampleon gives no representations or warranties, expressed or implied, as to the accuracy or completeness of such information and assumes no liability for the consequences of the use of such information. Ampleon is not liable for content provided by an external information source.

In no event and irrespective of the legal basis (contract, tort (including negligence) statutory liability, misrepresentation, indemnity or any other area of law) shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including but without limitation loss of profit or revenue, loss of use or loss of production, loss of data, cost of capital, cost of substitute goods, property damage external to the Ampleon products and any damage, expenditure or loss arising out of such damage, business interruption, costs related to the removal or replacement of any products or rework charges) or any of the foregoing suffered by any third party.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Ampleon.

Right to make changes — Ampleon reserves the right to change information including but without limitation specifications and product descriptions published in this document at any time and without notice. This document supersedes and replaces all information regarding these products supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Insofar as a customer or another party nevertheless uses Ampleon products unlawfully for such purposes. Ampleon and its suppliers are not liable for any damages.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon is not liable for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers shall provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon is not liable related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for and shall do all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's. Ampleon is not liable in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not guaranteed. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Ampleon products are sold subject to the general terms and conditions of commercial sale, as published at http://www.ampleon.com/terms, unless otherwise agreed in a valid written individual agreement. In the event of signing an individual agreement the terms and conditions of the respective agreement shall apply. Ampleon hereby expressly objects to and rejects the validity of customer's terms and conditions regarding the purchase of Ampleon products by customer.

LDMOS 2-stage integrated Doherty MMIC

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Ampleon product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Ampleon is not liable for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer breaches this and uses the products for design and use in automotive applications in accordance with automotive specifications and standards, (a) Ampleon gives no warranty, representation

14. Contact information

or other guarantees of any kind with respect to such automotive applications, use and specifications, and (b) such use is solely and exclusively at customer's own risk, and (c) customer fully indemnifies Ampleon against any and all liability, damages or failed product claims, including against third parties, arising out of customer's design and use of the product for automotive applications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales

LDMOS 2-stage integrated Doherty MMIC

15. Contents

1	Product profile 1
1.1	General description 1
1.2	Features and benefits
1.3	Applications 1
2	Pinning information 2
2.1	Pinning 2
2.2	Pin description 2
3	Ordering information
4	Block diagram 3
5	Limiting values
6	Thermal characteristics
7	Characteristics 4
8	Application information
8.1	Typical performance as driver application 5
8.2	PCB layout and electrical schematic 6
8.3	Ruggedness in a Doherty operation 8
8.3.1	Output mismatch ruggedness
8.3.2	Wideband noise ruggedness
8.4	Impedance information 8
9	Package outline 9
10	Handling information 10
11	Abbreviations 10
12	Revision history 10
13	Legal information 11
13.1	Data sheet status 11
13.2	Definitions 11
13.3	Disclaimers
13.4	Trademarks 12
14	Contact information 12
15	Contents 13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Ampleon Netherlands B.V. 2022.

All rights reserved.

For more information, please visit: http://www.ampleon.com For sales office addresses, please visit: http://www.ampleon.com/sales

Date of release: 11 November 2022 Document identifier: B10G2327N55D