

16-Mbit (1 M × 16) Static RAM

Features

■ High speed: 45 ns/55 ns

■ Temperature range:

□ Industrial: -40 °C to +85 °C

Wide voltage range: 1.65 V to 1.95 V, 2.2 V to 3.6 V and 4.5 V to 5.5 V

■ Ultra-low standby power

Typical standby current at 25 °C = 1.5 μA

Typical standby current at 40 °C = 2.5 μA

■ Ultra-low active power

 \square Active current: I_{CC} = 2.2 mA (typical) at f = 1 MHz

■ Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 , and \overline{OE} Features

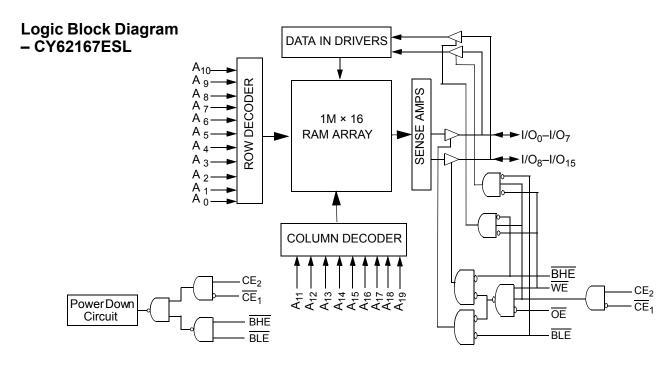
■ Automatic power-down when deselected

■ CMOS for optimum speed and power

■ Pb-free 60-pin WLCSP packages

Functional Description

The CY62167ESL is a high-performance CMOS Static RAM organized as 1M words by 16 bits. This device features an advanced circuit design that provides an ultra low active current. Ultra low active current is ideal for providing More Battery Life™ (MoBL®) in portable applications such as hand-held devices. The device also has an automatic power-down feature that


reduces power consumption by 99% when addresses are not toggling. Place the device into standby mode when deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW or both \overline{BHE} and \overline{BLE} are HIGH).

The input and output pins (I/O_0 through I/O_{15}) are placed in a high impedance state during the following events:

- The device is deselected (CE₁ HIGH or CE₂ LOW)
- Outputs are disabled (OE HIGH)
- Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or a write operation is in progress (CE₁ LOW, CE₂ HIGH and WE LOW)

Write to the device by taking Chip Enable (\overline{CE}_1 LOW and CE_2 <u>HIGH</u>) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins (I/O $_0$ through I/O $_1$) is written into the location specified on the address pins (A_0 through A₁₉). If Byte High Enable (\overline{BHE}) is LOW, then data from the I/O pins (I/O $_8$ through I/O $_15$) is written into the location specified on the address pins (A_0 through A₁₉).

Read from the device by taking Chip Enables ($\overline{\text{CE}}_1$ LOW and CE₂ HIGH) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See Truth Table on page 12 for a complete description of read and write modes.

Cypress Semiconductor CorporationDocument Number: 001-95928 Rev. *C

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600

Revised December 22, 2017

Contents

Pin Configurations	3
Product Portfolio	3
Maximum Ratings	4
Operating Range	4
DC Electrical Characteristics	4
Capacitance	
Thermal Resistance	
AC Test Loads and Waveforms	5
Data Retention Characteristics	6
Data Retention Waveform	6
AC Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering information	13
Ordering Code Definitions	13
Package Diagram	14
Acronyms	15
Document Conventions	15
Units of Measure	15
Document History Page	16
Sales, Solutions, and Legal Information	17
Worldwide Sales and Design Support	17
Products	17
PSoC® Solutions	17
Cypress Developer Community	17
Technical Support	17

Pin Configurations
Figure 1. 60-Pin WLCSP Pinout (Ball Up View)^[1]

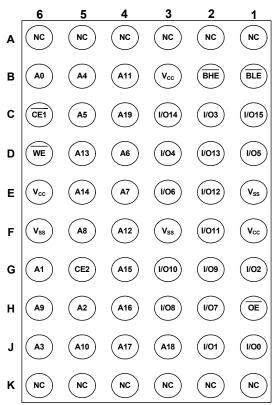


Figure 2. 60-Pin WLCSP Pinout (Ball Down View)^[1]

	1	2	3	4	5	6
A	NC	NC	NC	NC	NC	NC
В	BLE	BHE	V _{cc}	(A11)	A4	AO
С	1/015	(I/O3)	V 014	A19	A5	(CE1)
D	1/05	(I/O13)	1/04	A6	(A13)	WE
E	V _{ss}	(I/O12)	1/06	A7	A14	V _{cc}
F	V _{cc}	(I/O11)	V _{ss}	(A12)	A8	V _{ss}
G	1/02	(1/09	(VO10)	A15	CE2	(A1)
н	OE OE	1/07	(1/08	(A16)	(A2)	(A9)
J	1/00	(I/O1)	(A18)	(A17)	(A10)	(A3)
K	NC	NC	NC	NC	NC	NC

Product Portfolio

					Power Dissipation									
Product	Pango	V _{CC} Range (V)			nge (V) Operating I _{CC} (mA)		Operating I _{CC} (mA)				oy I _{SB2}			
Product	Range	•	Speed (ns) f = 1 MHz		MHz	f = f _{max}		Standby I _{SB2} (μA)						
		Min	Тур	Max		Тур	Max	Тур	Max	Тур	Max			
		4.5	5.0	5.5	45	45	45	45						
CY62167ESL	Industrial	2.2	3.0	3.6				2.2	4.0	25	30	1.5	12	
		1.65 1.8 1.95 55												

^{1.} NC pins are not connected on the die.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of device. User guidelines are not tested. Storage temperature-65 °C to + 150 °C Ambient temperature with power applied-55 °C to + 125 °C Supply voltage to ground potential $^{[2,\ 3]}$ -0.5 V to 6.0 V DC voltage applied to outputs in High Z state $^{[2,\,3]}$ –0.5 V to V $_{CC}$ + 0.5 V

DC input voltage [2, 3]	0.5 V to V _{CC} + 0.5 V
Output current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC} [4]
CY62167ESL	Industrial	–40 °C to +85 °C	1.65 V to 1.95 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V

DC Electrical Characteristics

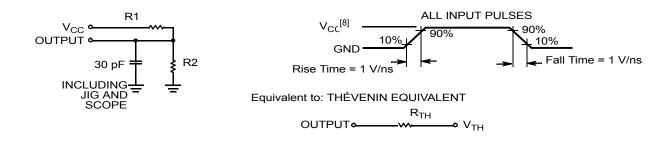
Over the operating range of -40 °C to 85 °C

Davamatau	Description	Test Conditions			45/55 ns		
Parameter Description		rest conditions			Typ ^[5]	Max	Unit
		1.65 ≤ V _{CC} ≤ 1.95	$I_{OH} = -0.1 \text{ mA}$	1.4	_	_	
V	Output HICH Valtage	2.2 ≤ V _{CC} ≤ 2.7	$I_{OH} = -0.1 \text{ mA}$	2.0	_	_	
V _{OH}	Output HIGH Voltage	2.7 ≤ V _{CC} ≤ 3.6	$I_{OH} = -1.0 \text{ mA}$	2.4	-	_	
		4.5 ≤ V _{CC} ≤ 5.5	$I_{OH} = -1.0 \text{ mA}$	2.4	_	_	
		1.65 ≤ V _{CC} ≤ 1.95	$I_{OL} = 0.1 \text{ mA}$	_	-	0.2	
V	Output LOW Voltage	2.2 ≤ V _{CC} ≤ 2.7	$I_{OL} = 0.1 \text{ mA}$	_	_	0.4	
V_{OL}	Output LOW Voltage	2.7 ≤ V _{CC} ≤ 3.6	I _{OL} = 2.1 mA	_	_	0.4	
		4.5 ≤ V _{CC} ≤ 5.5	I _{OL} = 2.1 mA	_	-	0.4	V
		1.65 <u><</u> V _{CC} <u><</u> 1.95		1.4	_	V _{CC} + 0.2	V
V	Innut HICH Voltage	2.2 ≤ V _{CC} ≤ 2.7		1.8	_	V _{CC} + 0.3	
V_{IH}	Input HIGH Voltage	2.7 ≤ V _{CC} ≤ 3.6			_	V _{CC} + 0.3	
		4.5 ≤ V _{CC} ≤ 5.5					
		1.65 <u><</u> V _{CC} <u><</u> 1.95		-0.2	-	0.4	
M	Innuit I OW Valtage	2.2 ≤ V _{CC} ≤ 2.7	-0.3	_	0.6		
V_{IL}	Input LOW Voltage	2.7 ≤ V _{CC} ≤ 3.6	-0.3	_	0.8]	
		4.5 ≤ V _{CC} ≤ 5.5		-0.5	_	0.8	
I _{IX}	Input Leakage Current	$GND \leq V_{I} \leq V_{CC}$		-1.0	_	+1.0	^
I _{OZ}	Output Leakage Current	GND ≤ V _O ≤ V _{CC} , Output disabled		-1.0	_	+1.0	μΑ
	V _{CC} Operating Supply	$f = f_{max} = 1/t_{RC}$	V _{CC} = Vcc Max.	-	25.0	30.0	
I _{CC}	Current	f = 1 MHz	I _{OUT} = 0 mA, CMOS levels	-	2.2	4.0	mA
I _{SB1} ^[6]	Automatic CE Power-down Current – CMOS Inputs	$\label{eq:center_constraints} \begin{split} \overline{\text{CE}}_1 &\geq \text{V}_{\text{CC}} - 0.2 \text{ V or CE}_2 \leq 0.2 \text{ V or } (\overline{\text{BHE}} \\ &- 0.2 \text{ V, V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V, V}_{\text{IN}} \leq 0.2 \text{ V,} \\ f &= f_{\text{max}} \text{ (address and data only), } f = 0 (\overline{\text{OE}}, \\ \text{V}_{\text{CC}} &= \text{V}_{\text{CC}(\text{max})} \end{split}$	and $\overline{\text{WE}}$),	_	_	12.0	
		$\overline{CE}_1 \ge V_{CC} - 0.2V$ or $CE_2 \le 0.2 \text{ V}$	25 °C ^[5]	_	1.5	4.0	μΑ
I _{SB2} ^[6]	Automatic CE Power-down	or (\overline{BHE} and \overline{BLE}) $\geq V_{CC} - 0.2 \text{ V}$,	40 °C ^[5]	-	2.5	7.0	
,2R5	Current – CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V},$ f = 0, $V_{CC} = V_{CC(max)}$	85 °C	_	_	12.0	

Notes

- V_{IL(min)} = -2.0 V for pulse durations less than 20 ns.
 V_{IH(max)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 V_{IH(max)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 Full Device AC operation assumes a 100 μs ramp time from 0 to V_{CC(min)} and 200 μs wait time after V_{CC} stabilization.
 These values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 Chip enables (CE₁ and CE₂) and byte enables (BHE and BLE) must be tied to CMOS levels to meet the I_{SB1}/I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

Capacitance


Parameter [7]	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	T - 25 °C f - 4 MH- 1/ - 1/	10.0	pF
C _{OUT}	Output Capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$	10.0	pF

Thermal Resistance

Parameter [7]	Description	Test Conditions	WLCSP Package	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still Air, soldered on a 3 × 4.5 inch, four-layer printed	26.54	°C/W
Θ_{JC}	Thermal resistance (junction to case)	circuit board	0.11	°C/W

AC Test Loads and Waveforms

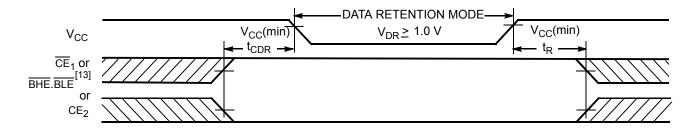
Figure 3. AC Test Loads and Waveforms

Parameters	1.65 V to 1.95 V	2.2 V to 2.7 V	2.7 V to 3.6 V	4.5 V to 5.5 V	Unit
R1	13500	16667	1103	1800	Ω
R2	10800	15385	1554	990	Ω
R _{TH}	6000	8000	645	639	Ω
V _{TH}	0.80	1.20	1.75	1.77	V

Notes

^{7.} Tested initially and after any design or process changes that may affect these parameters.

Tests conditions for all parameters other than tri-state parameters assume signal transition time of 1 V/ns, timing reference level of 1.5V (for $V_{CC} > 3V$) and $V_{CC} < 3V$), and input pulse levels of 0 to 3V (for $V_{CC} > 3V$) and 0 to $V_{CC} < 3V$) and output loading of the specified I_{OL}/I_{OH} as shown.


Data Retention Characteristics

Over the operating range of -40 °C to 85 °C

Parameter	Description	Conditions	Min	Typ [9]	Max	Unit
V_{DR}	V _{CC} for Data Retention	-	1.0	_	_	V
I _{CCDR} ^[10]	Data Retention Current	V_{CC} = 1.0 V, $\overline{CE}_1 \ge V_{CC} - 0.2$ V or $CE_2 \le 0.2$ V or $\overline{(BHE \text{ and } \overline{BLE})} \ge V_{CC} - 0.2$ V, $\overline{V}_{IN} \ge V_{CC} - 0.2$ V or $\overline{V}_{IN} \le 0.2$ V	ı	-	10.0	μΑ
t _{CDR} ^[11]	Chip Deselect to Data Retention Time	-	0.0	-	-	-
t _R ^[12]	Operation Recovery Time	-	45/55	_	-	ns

Data Retention Waveform

Figure 4. Data Retention Waveform

^{9.} Typical values <u>are</u> included for reference only, and are not <u>guaranteed</u> or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

10. Chip enables (CE₁ and CE₂) and byte enables (BHE and BLE) must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

^{11.} Tested initially and after any design or process changes that may affect these parameters.

^{12.} Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

13. BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.

AC Switching Characteristics

Over the operating range of -40 °C to 85 °C

[14 15]	B	45	ns	55		
Parameter [14, 15]	Description		Max	Min	Max	Unit
Read Cycle		•	1	•	•	
t _{RC}	Read cycle time	45	_	55	_	ns
t _{AA}	Address to data valid	_	45	-	55	ns
t _{OHA}	Data hold from address change	10	-	10		ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid	_	45	-	55	ns
t _{DOE}	OE LOW to data valid	_	22	-	25	ns
t _{LZOE}	OE LOW to Low Z [15]	5	_	5	_	ns
t _{HZOE}	OE HIGH to High Z [15, 16]	_	18	_	18	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z [15]	10	_	10	_	ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[15, 16]	_	18	_	18	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up	0	_	0	_	ns
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down	_	45	_	55	ns
t _{DBE}	BLE / BHE LOW to data valid	_	45	_	55	ns
t _{LZBE}	BLE / BHE LOW to Low Z [15]	10	_	10	_	ns
t _{HZBE}	BLE / BHE HIGH to High Z [15, 16]	_	18	_	18	ns
Write Cycle ^[17, 18]	İ		1	•	-	
t _{WC}	Write cycle time	45	_	55	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	35	_	40	_	ns
t _{AW}	Address setup to write end	35	_	40	_	ns
t _{HA}	Address hold from write end	0	_	0	_	ns
t _{SA}	Address setup to write start	0	_	0	_	ns
t _{PWE}	WE pulse width	35	_	40	_	ns
t _{BW}	BLE / BHE LOW to write end	35	_	40	_	ns
t _{SD}	Data setup to write end	25	_	25	_	ns
t _{HD}	Data hold from write end	0	_	0	_	ns
t _{HZWE}	WE LOW to High Z [15, 16]	_	18	-	20	ns
t _{LZWE}	WE HIGH to Low Z [15]	10	_	10	_	ns

Notes

14. Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 V/ns, timing reference level of 1.5V (for V_{CC} > 3V) and V_{CC}/2 (for V_{CC} < 3V), and input pulse levels of 0 to 3V (for V_{CC} > 3V) and 0 to V_{CC} (V_{CC} < 3V) and output loading of the specified I_{OL}/I_{OH} as shown in Figure 3 on page 5.

15. At any temperature and voltage condition, t_{HZCE} is less than t_{LZE}, t_{HZBE} is less than t_{LZE}, t_{HZDE} is less than t_{LZE}, and t_{HZWE} is less than t_{LZWE} for any device.

16. t_{HZCE}, t_{HZEB}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.

17. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

18. The minimum pulse width for write cycle 3 (WE controlled, OE LOW) should be equal to the sum of tsD and thzwe.

Switching Waveforms

Figure 5. Read Cycle No. 1 (Address Transition Controlled) [19, 20]

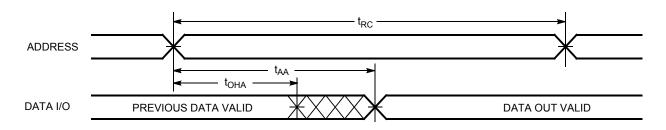
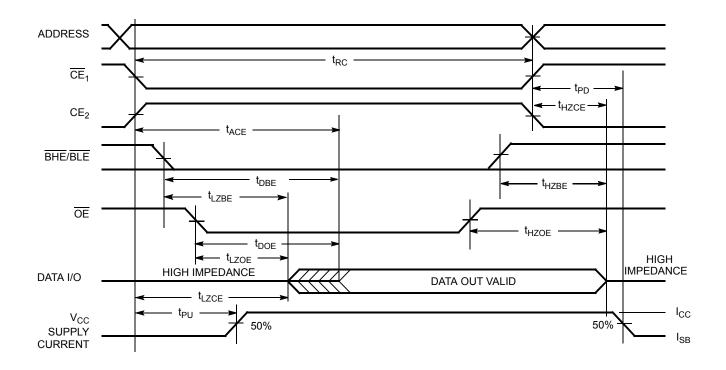
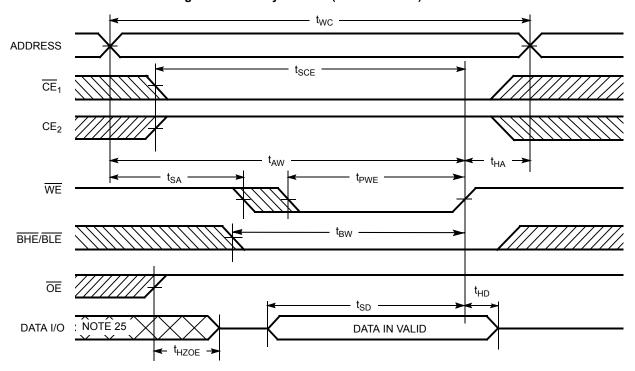



Figure 6. Read Cycle No. 2 (OE Controlled) [20, 21]

Notes

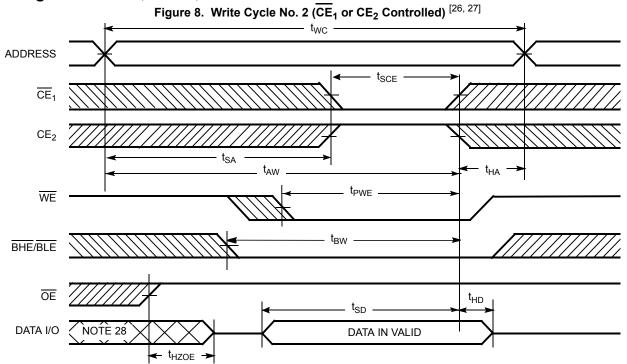
^{19.} The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} , \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$.


^{20.} WE is HIGH for read cycle.

^{21.} Address valid before or similar to \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and \overline{CE}_2 transition HIGH.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) [22, 23, 24]


^{22.} The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write. 23. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

^{24.} If $\overline{\text{CE}}_1$ goes HIGH and CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ = V_{IH} , the output remains in a high impedance state.

^{25.} During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

^{26.} The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

27. If CE₁ goes HIGH and CE₂ goes LOW simultaneously with WE = V_{IH}, the output remains in a high impedance state.

^{28.} During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 9. Write Cycle No. 3 (WE Controlled, OE LOW) [29, 31]

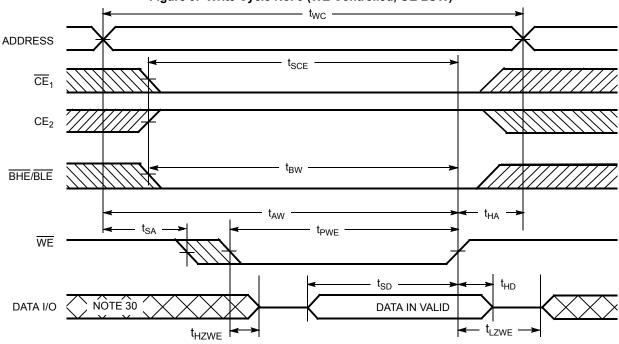
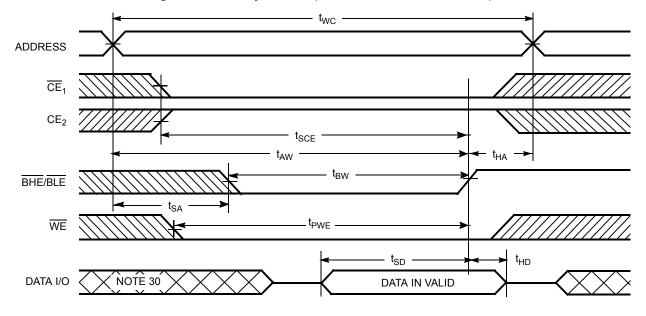



Figure 10. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [29]

Notes

29. If $\overline{\text{CE}}_1$ goes HIGH and CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ = V_{IH}, the output remains in a high impedance state.

30. During this period, the I/Os are in output state. Do not apply input signals.

31. The minimum pulse width for write cycle 3 (WE controlled, OE LOW) should be equal to the sum of tsD and tHzwE.

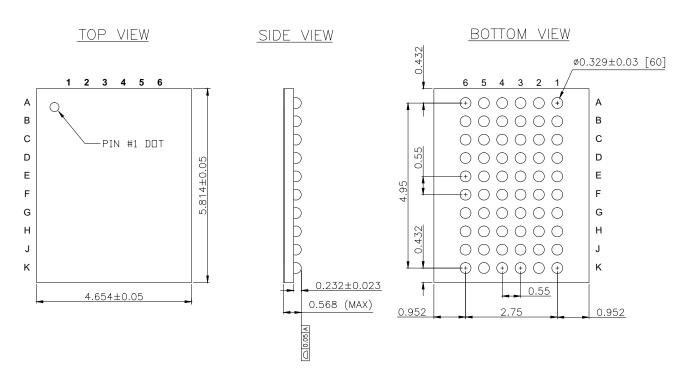
Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	X ^[32]	Х	Χ	X ^[32]	X ^[32]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[32]	L	Χ	Χ	X ^[32]	X ^[32]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[32]	X ^[32]	Χ	Χ	Н	Η	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	Ш	L	Ш	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇) High Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇) Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output disabled	Active (I _{CC})
L	Н	L	Χ	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇) High Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (I/O ₀ –I/O ₇) Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})

Note
32. The 'X' (Don't care) state for the chip enables and Byte enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62167ESL-55FNXI	001-96092	WLCSP	Industrial
	CY62167ESL-55FNXIT	001-90092	WLOOF	muusman


Ordering Code Definitions

Package Diagram

Figure 11. 60-Pin WLCSP Package Outline

NOTES:

1. Reference Jedec Publication 95; Design Guide 4.18

2. All dimensions are in millimeters

001-96092 **

Acronyms

Acronym	Description			
BHE	byte high enable			
BLE	byte low enable			
CE	chip enable			
CMOS	complementary metal oxide semiconductor			
I/O	input/output			
OE	output enable			
SRAM	static random access memory			
TSOP	thin small outline package			
VFBGA	very fine-pitch ball grid array			
WE	write enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
μS	microsecond			
mA	milliampere			
mm	millimeter			
ns	nanosecond			
Ω	ohm			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Document Title: CY62167ESL MoBL [®] , 16-Mbit (1 M × 16) Static RAM Document Number: 001-95928					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
**	4626678	VINI	02/03/2015	New datasheet.	
*A	4664021	VINI	02/17/2015	Added Thermal Resistance. Updated the label "V" to "V _{TH} " in Figure 3.	
*B	4841477			Updated Ordering Information and Ordering Code Definitions to include Tape and Reel parts.	
*C	6003255	AESATMP9	12/22/2017	Updated logo and copyright.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software is binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not l

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-95928 Rev. *C Revised December 22, 2017 Page 17 of 17