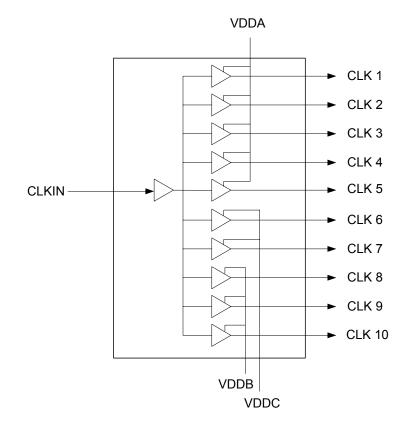
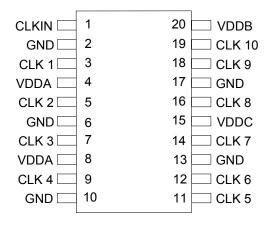
RENESAS

BUFFER/CLOCK DRIVER

ICSLV810


Description

The ICSLV810 is a low skew 1.5 V to 2.5 V, 1:10 fanout buffer. This device is specifically designed for data communications clock management. The large fanout from a single input line reduces loading on the input clock. The TTL level outputs reduce noise levels on the part. Typical applications are clock and signal distribution.


Features

- Packaged in 20-pin QSOP/SSOP
- Split 1:10 fanout Buffer
- Maximum skew between outputs of different packages 0.75 ns
- Max propagation delay of 3.8 ns
- Operating voltage of 1.5 V to 2.5 V on Bank A
- Operating voltage of 1.5 V to 2.5 V on Banks B and C
- Advanced, low power, CMOS process
- Industrial temperature range -40° C to +85° C
- 3.3 V tolerant input when VDDA=2.5 V
- Pb (lead) free packaging

Block Diagram

Pin Assignment

20 pin (150mil) SSOP

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	CLKIN	Input	Clock input.
2	GND	Power	Connect to ground.
3	CLK1	Output	Clock output.
4	VDDA	Power	Connect to +1.5 - +2.5 V.
5	CLK2	Output	Clock output.
6	GND	Power	Connect to ground.
7	CLK3	Output	Clock output.
8	VDDA	Power	Connect to +1.5 - +2.5 V.
9	CLK4	Output	Clock output.
10	GND	Power	Connect to ground.
11	CLK5	Output	Clock output.
12	CLK6	Output	Clock output.
13	GND	Power	Connect to ground.
14	CLK7	Output	Clock output.
15	VDDC	Power	Connect to +1.5 - 2.5 V.
16	CLK8	Output	Clock output.
17	GND	Power	Connect to ground.
18	CLK9	Output	Clock output.
19	CLK10	Output	Clock output.
20	VDDB	Power	Connect to +1.5 - 2.5 V.

External Components

The ICSLV810 requires a minimum number of external components for proper operation.

Decoupling Capacitors

Decoupling capacitors of 0.01μ F must be connected between VDD and GND, as close to these pins as possible. For optimum device performance, the decoupling capacitors should be mounted on the component side of the PCB. Avoid the use of vias in the decoupling circuit.

Series Termination Resistor

When the PCB trace between the clock outputs and the loads are over 1 inch, series termination should be used. To series terminate a 50Ω trace (a commonly used trace impedance) place a 33Ω resistor in series with the clock line,

Absolute Maximum Ratings

as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω

PCB Layout Recommendations

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

1) The 0.01μ F decoupling capacitors should be mounted on the component side of the board as close to the VDD pins as possible. No vias should be used between the decoupling capacitors and VDD pins. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via.

2) To minimize EMI the 33Ω series termination resistor, if needed, should be placed close to the clock output.

Stresses above the ratings listed below can cause permanent damage to the ICSLV810. These ratings, which are standard values for ICS commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD MAX	7 V
All Inputs and Outputs	-0.5 V to VDDA + 1.2 V
Ambient Operating Temperature	-40 to +85° C
Storage Temperature	-65 to +150° C
Junction Temperature	125°C
Soldering Temperature	260° C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured with respect to GND), VDDA	1.425		2.625	V
Power Supply Voltage (measured with respect to GND), VDDB	1.425		2.625	V
Power Supply Voltage (measured with respect to GND), VDDC	1.425		2.625	V

DC Electrical Characteristics—CLKIN and Bank A

Parameter	Symbol Conditions		ons	Min.	Тур.	Max.	Units
Operating Voltage	VDDA			1.425		2.625	V
Quiescent Power Supply Current	IDDA	No Load F = 40 MHz			15		mA
Short Circuit Current	los	CLK 1 - 5			±80		mA
Input High Voltage, CLKIN	V _{IH}	Guaranteed Logic Level High		1.6			V
Input Low Voltage, CLKIN	V _{IL}	Guaranteed Logic Level Low				0.8	V
Output High Voltage	V _{OH}	VIN = VIH or VIL	Іон = -7 mA	1.8			V
Output Low Voltage	V _{OL}	VIN = VIH or VIL	IoL=12 mA			0.4	V
Input High Current	Ін	VDD = max	VIN = 2.4 V			1	μA
Input Low Current	١L	VDD = max	VIN = 0.5 V			-1	μA
Input High Current	lı lı	VDD = max	VIN = VDD (max)			20	μA
Input Capacitance	CIN	VIN = 0V, Note1			5	6.0	pF
Output Capacitance	Соит	V _{OUT} = 0V, Note1			5.5	8.0	pF

VDDA = 2.5 V, Ambient Temperature -40° C to +85° C

Note1: This parameter is not tested, guaranteed by design.

DC Electrical Characteristics—Bank B

VDDB = 2.5 V, Ambient Temperature -40° C to $+85^{\circ}$ C, unless otherwise noted

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Operating Voltage	VDDB			1.425		2.625	V
Quiescent Power Supply Current	IDDB	VDDB = 2.5 V No Load F = 40 MHz			7		mA
		VDDB = 1.5 V No Load F = 40 MHz			3		mA
Short Circuit	los	VDDB = 1.5 V	CLK8-10		±35		mA
Current		VDDB = 2.5 V	CLK8-10		±80		mA

Parameter	Symbol	Conditio	ons	Min.	Тур.	Max.	Units
Output High Voltage	V _{OH}	VDDB = 1.5 V VIN = VIH or VIL	Іон = -7 mA	1.1			V
		VDDB = 2.5 V VIN = VIH or VIL	Іон = -7 mA	1.8			V
Output Low Voltage	V _{OL}	VDDB = 1.5 V VIN = VIH or VIL	IoL=12 mA			0.42	V
		VDDB = 2.5 V VIN = VIH or VIL	IoL=12 mA			0.4	V
Input High Current	Іін	VDDB = max				1	μA
Input Low Current	١L	VDDB = max				-1	μA
Input High Current	lı	VDDB = max, VIN = VDD (max)				20	μA
Input Capacitance	CIN	VIN = 0V, Note1			5	6.0	pF
Output Capacitance	Соит	V _{OUT} = 0V, Note 1			5.5	8.0	pF

Note1: This parameter is not tested, guaranteed by design.

DC Electrical Characteristics—Bank C

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Operating Voltage	VDDC			1.425		2.625	V
Quiescent Power Supply Current	IDDC	VDDC = 2.5 V No Load F = 40 MHz			3		mA
		VDDC = 1.5 V No Load F = 40 MHz			2		mA
Short Circuit Current	los	VDDC = 1.5 V	CLK6-7		±35		mA
		VDDC = 2.5 V	CLK6-7		±80		mA
Output High Voltage	V _{OH}	VDDC = 1.5 V VIN = VIH or VIL	Іон = -7 mA	1.1			V
		VDDC = 2.5 V VIN = VIH or VIL	Іон = -7 mA	1.8			V
Output Low Voltage	V _{OL}	VDDC = 1.5 V VIN = VIH or VIL	IoL =12 mA			0.42	V
		VDDC = 2.5 V VIN = VIH or VIL	IoL =12 mA			0.4	V
Input High Current	Ін	VDDC = max				1	μA
Input Low Current	١L	VDDC = max				-1	μA

VDDC = 2.5 V, Ambient Temperature -40° C to +85° C, unless otherwise noted

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Input High Current	lı	VDDC = max, VIN = VDD (max)				20	μA
Input Capacitance	CIN	VIN = 0V, Note1			5	6.0	pF
Output Capacitance	Соит	V _{OUT} = 0V, Note 1			5.5	8.0	pF

Note1: This parameter is not tested, guaranteed by design.

AC Electrical Characteristics—Bank A

VDDA = 2.5 V,	Ambient Temperature -40	° C to +85° C
---------------	-------------------------	---------------

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Skew: skew between outputs of same package	tsк(0)	CL = 3 pF, RL = 500Ω Figure 3	-200		200	ps
Pulse Skew: skew between opposite transitions of same output (tPLH-tPHL)	tsk(p)	CL = 3 pF, RL = 500Ω Figure 4	-200		200	ps
Propagation Delay	tpLH / tpHL	CL = 3 pF, RL = 500Ω Figure 2	1.5	2.6	3.5	ns
Part to Part Skew	tSK(t)	CL = 3 pF, $RL = 500\Omega$ Figure 5	-650		650	ps
Output Rise Time 20% to 80%	tr(o)	CL = 3 pF, RL = 500Ω		0.8		ns
Output Fall Time 80% to 20%	tf(o)	CL = 3 pF, RL = 500Ω		0.8		ns
Additive Jitter	tj	All Outputs			50	ps
Duty Cycle Measured at VDD/2	DC	CL = 3 pF, RL = 500Ω	45		55	%
Duty Cycle, VDDA=1.8V	DC		40	50	60	%
Output Frequency Range			1		133	MHz

AC Electrical Characteristics—Bank B

VDDB = 2.5 V, Ambient Temperature -40	$^{\circ}$ C to +85 $^{\circ}$ C, unless otherwise noted
---------------------------------------	--

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Skew: skew between outputs of same package	tsκ(0)	$CL = 3 \text{ pF}, \text{ RL} = 500\Omega$ Figure 3	-200		200	ps
Pulse Skew: skew between opposite transitions of same output (tPLH-tPHL)	tsk(p)	$CL = 3 \text{ pF}, RL = 500\Omega$ Figure 4	-200		200	ps
Propagation Delay	tpLH / tpHL	CL = 3 pF, RL = 500Ω, VDDB = 1.5 V Figure 2		5.5		ns
		CL = 3 pF, RL = 500Ω, VDDB = 2.5 V Figure 2	1.5	2.6	3.5	ns
Part to Part Skew		$CL = 3 pF, RL = 500\Omega$ VDDB = 1.5 V Figure 5	-1		1	ns
		$\label{eq:L} \begin{array}{l} CL = 3 \ pF, \ RL = 500 \Omega \\ VDDB = 2.5 \ V \\ Figure \ 5 \end{array}$	-650		650	ps
Output Rise Time 20% to 80%	tr(o)	CL = 3 pF, RL = 500Ω VDDB = 1.5 V		1.0		ns
		CL = 3 pF, RL = 500Ω VDDB = 2.5 V		0.8		ns
Output Fall Time 80% to 20%	tf(o)	CL = 3 pF, RL = 500Ω VDDB = 1.5 V		1.0		ns
		CL = 3 pF, RL = 500Ω VDDB = 2.5 V		0.8		ns
Additive Jitter	tj	All Outputs, VDDB = 1.5 V			34	ps
		All Outputs, VDDB = 2.5 V			50	ps
Duty Cycle Measured at VDD/2	DC	CL = 3 pF, RL = 500Ω	45		55	%
Duty Cycle, VDDB = 1.8V	DC		40	50	60	%
Output Frequency Range			1		133	MHz

AC Electrical Characteristics—Bank C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Skew: skew between outputs of same package	tsк(0)	$CL = 3 \text{ pF}, \text{ RL} = 500\Omega$ Figure 3	-200		200	ps
Pulse Skew: skew between opposite transitions of same output (tPLH-tPHL)	tsk(p)	$CL = 3 \text{ pF}, RL = 500\Omega$ Figure 4	-200		200	ps
Propagation Delay	t _{pLH} / tpHL	CL = 3 pF, RL = 500Ω, VDDC = 1.5 V Figure 2		5.5		ns
		CL = 3 pF, RL = 500Ω, VDDC = 2.5 V Figure 2	1.5	2.6	3.5	ns
Part to Part Skew		$\label{eq:L} \begin{array}{l} CL = 3 \ pF, \ RL = 500 \Omega \\ VDDC = 1.5 \ V \\ Figure \ 5 \end{array}$	-1		1	ns
		$\label{eq:L} \begin{array}{l} CL = 3 \ pF, \ RL = 500 \Omega \\ VDDC = 2.5 \ V \\ Figure \ 5 \end{array}$	-650		650	ps
Output Rise Time 20% to 80%	tr(o)	CL = 3 pF, RL = 500Ω VDDC = 1.5 V		1.0		ns
		CL = 3 pF, RL = 500Ω VDDC = 2.5 V		0.8		ns
Output Fall Time 80% to 20%	tf(o)	CL = 3 pF, RL = 500Ω VDDC = 1.5 V		1.0		ns
		CL = 3 pF, RL = 500Ω VDDC = 2.5 V		0.8		ns
Additive Jitter	tj	All Outputs, VDDC = 1.5 V			34	ps
		All Outputs, VDDC = 2.5 V			50	ps
Duty Cycle Measured at VDD/2	DC	CL = 3 pF, RL = 500Ω	45		55	%
Duty Cycle, VDDC=1.8V	DC		40	50	60	%
Output Frequency Range			1		133	MHz

Thermal Characteristics for 20QSOP

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		135		° C/W
Ambient	θ_{JA}	1 m/s air flow		93		° C/W
	θ _{JA}	3 m/s air flow		78		° C/W
Thermal Resistance Junction to Case	θ_{JC}			60		° C/W

Thermal Characteristics for 20SOIC

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		83		° C/W
Ambient	θ_{JA}	1 m/s air flow		71		° C/W
	θ_{JA}	3 m/s air flow		58		° C/W
Thermal Resistance Junction to Case	θ _{JC}			46		° C/W

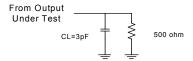
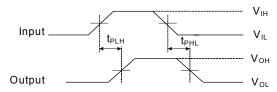
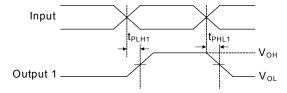





Figure 1. Load Circuit

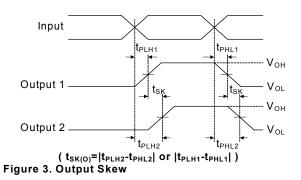
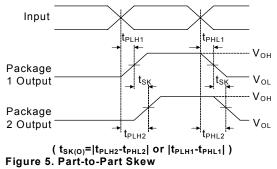
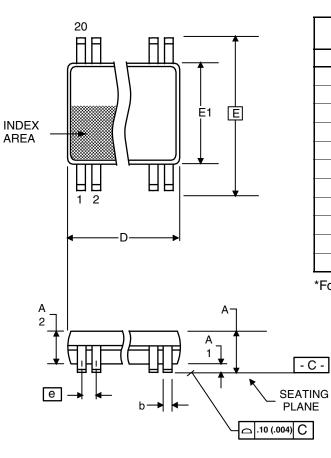
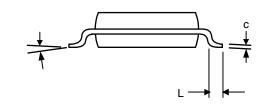
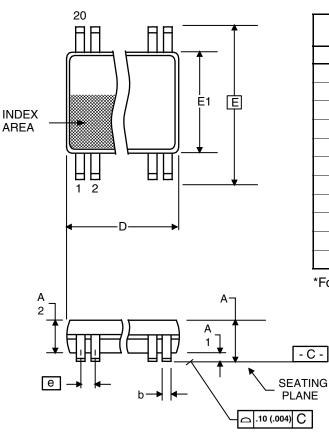




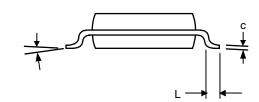
Figure 4. Pulse Skew ($t_{s\kappa(p)}$ =|tpLH - tpH|)


Package Outline and Package Dimensions (20-pin QSOP, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95


	Millimeters		Inches*		
Symbol	Min	Max	Min	Max	
A	1.35	1.75	.053	.069	
A1	0.10	0.25	.0040	.010	
A2		1.50		.059	
b	0.20	0.30	0.008	0.012	
С	0.18	0.25	.007	.010	
D	8.55	8.75	.337	.344	
E	5.80	6.20	.228	.244	
E1	3.80	4.00	.150	.157	
е	0.635 Basic		0.025	Basic	
L	0.40	1.27	.016	.050	
α	0 °	8 °	0 °	8 °	

*For reference only. Controlling dimensions in mm.


Package Outline and Package Dimensions (20-pin SSOP, 209 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

	Millimeters		Inches*		
Symbol	Min	Max	Min	Max	
A	_	2.00		.079	
A1	0.05	—	.002	—	
A2	1.65	1.85	.065	.073	
b	0.22	0.38	0.009	0.015	
С	0.09	0.25	.0035	.010	
D	6.90	7.50	.271	.295	
E	7.40	8.20	.291	.323	
E1	5.00	5.60	.197	.220	
е	0.65 Basic		0.0256	8 Basic	
L	0.55	0.95	.022	.037	
α	0 °	8 °	0 °	8 °	

*For reference only. Controlling dimensions in mm.

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
LV810RILF	LV810RILF	Tubes	20-pin QSOP	-40 to +85° C
LV810RILFT	LV810RILF	Tape and Reel	20-pin QSOP	-40 to +85° C
LV810FILF	LV810FILF	Tubes	20-pin SSOP	-40 to +85° C
LV810FILFT	LV810FILF	Tape and Reel	20-pin SSOP	-40 to +85° C

NOTE: EOL for non-green parts to occur on 5/13/10 per PDN U-09-01

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Date	Description of Change
Α	P.Griffith	03/25/05	New device/datasheet.
В	P.Griffith	05/02/05	Released from Preliminary to final; changed Short Circuit Current parameter in 2.5 V DC Char table to ± 80 mA; changed Short Circuit Current parameter in 1.5 V DC Char table to ± 35 mA
C	P.Griffith	05/12/05	Added bullet in "Features" for operating voltage of 2.5 V on Bank A and specified that operating voltages of 1.5 and 2.5 V are on Banks B and C; changed block diagram input and pin 1 from IN to CLKIN; removed +1.5 V spec from pin 4 and pin 8 descriptions; added "VDDA + 1.2 V" to "All Inputs and Outputs" section of Absolute Maximum Ratings; added min and max values for Banks A, B, and C "Power Supply Voltage" in Recommended Operating Conditions; expanded DC Electrical Char tables in to include a separate table for Banks A, B, and C;
D	P.Griffith	06/21/05	Added 209 mil 20-pin SSOP package and ordering info.
E	K. Beckmeyer	07/27/05	Specified operating voltage on Bank A from 1.5V to 2.5V; Added figures 4 and 5 on page 10 to explain Pulse Skew and Part-to-Part Skew; Changed Output Frequency Max Specification to 133MHz in AC Electrical Char tables for Banks A, B, and C; Added Duty Cycle Spec for VDD = 1.5V in AC Electrical Char tables for Banks A, B, C; Changed CLK conditions in DC Electrical Char tables on Banks B and C; removed SOIC package.
F	K. Beckmeyer	10/13/05	Added "LF" packaging and ordering info to both "R" and "F" packages.
G		12/17/09	Added EOL note for non-gren parts.
Н		05/13/10	Removed EOL note and non-green orderables.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>