

MEMS pressure sensor: 260-1260 mbar absolute digital output barometer

Datasheet -production data

Features

■ 260 to 1260 mbar absolute pressure range

■ High-resolution mode: 0.020 mbar RMS

■ Low power consumption:

Low resolution mode: 5.5 μA
High resolution mode: 30 μA

■ High overpressure capability: 20x full scale

■ Embedded temperature compensation

■ Embedded 24-bit ADC

■ Selectable ODR from 1 Hz to 25 Hz

■ SPI and I²C interfaces

Supply voltage: 1.71 to 3.6 V
High shock survivability: 10,000 *g*

Small and thin package

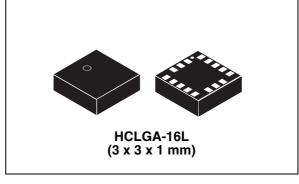
■ ECOPACK® lead-free compliant

Applications

Indoor and outdoor navigation

■ Enhanced GPS for dead-reckoning

■ Altimeter and barometer for portable devices


■ Weather station equipment

Sport watches

Description

The LPS331AP is an ultra compact absolute piezoresistive pressure sensor. It includes a monolithic sensing element and an IC interface able to take the information from the sensing element and to provide a digital signal to the external world.

Table 1. Device summary

The sensing element consists of a suspended membrane realized inside a single mono-silicon substrate. It is capable to detecting pressure and is manufactured using a dedicated process developed by ST, called *VENSENS*.

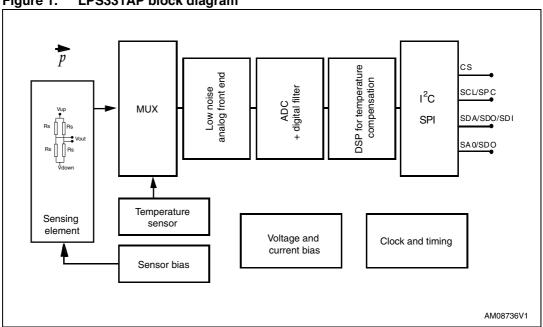
The VENSENS process allows to build a monosilicon membrane above an air cavity with controlled gap and defined pressure. The membrane is very small compared to the traditionally built silicon micromachined membranes. Membrane breakage is prevented by an intrinsic mechanical stopper.

The IC interface is manufactured using a standard CMOS process that allows a high level of integration to design a dedicated circuit which is trimmed to better match the sensing element characteristics.

The LPS331AP is available in a small holed cap land grid array (HCLGA) package and it is guaranteed to operate over a temperature range extending from -40 °C to +85 °C. The package is holed to allow external pressure to reach the sensing element.

Order codes Temperature range [°C]		Package	Packing
LPS331APY	-40 to +85	HCLGA-16L	Tray
LPS331APTR	-40 to +65	HCLGA-16L	Tape and reel

Contents LPS331AP


Contents

1	Bloc	k diagram and pin description
	1.1	LPS331AP block diagram
	1.2	Pin description
2	Mecl	nanical and electrical specifications
	2.1	Mechanical characteristics
	2.2	Electrical characteristics
	2.3	Absolute maximum ratings
3	Fund	tionality 8
	3.1	Sensing element
	3.2	IC interface
	3.3	Factory calibration
4	Appl	ication hints
	4.1	Soldering information
5	Digit	al interfaces10
	5.1	I2C serial interface
	5.2	I2C serial interface
		5.2.1 I2C operation
	5.3	SPI bus interface
		5.3.1 SPI read
		5.3.2 SPI write
		5.3.3 SPI read in 3-wires mode
6	Regi	ster mapping
7	Regi	ster description
В	Pack	age mechanical section
9	Revi	sion history

1 Block diagram and pin description

1.1 LPS331AP block diagram

Figure 1. LPS331AP block diagram

1.2 Pin description

Figure 2. Pin connection

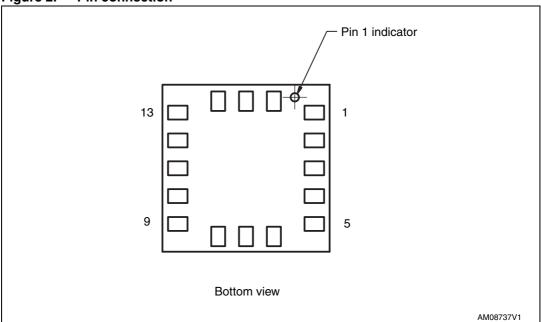


Table 2. Pin description

Pin#	Name	Function
1	Vdd_IO	Power supply for I/O pins
2	NC	Not connected
3	NC	Not connected
4	SCL SPC	I ² C serial clock (SCL) SPI serial port clock (SPC)
5	GND	0 V supply
6	SDA SDI SDO	I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
7	SDO SA0	SPI serial data output (SDO) I ² C less significant bit of the device address (SA0)
8	CS	SPI enable I ² C/SPI mode selection (1: I ² C mode; 0: SPI enabled)
9	INT2	Interrupt 2 (or data ready)
10	Reserved	Connect to GND
11	INT1	Interrupt 1 (or data ready)
12	GND	0 V supply
13	GND	0 V supply
14	VDD	Power supply
15	VCCA	Analog power supply
16	GND	0 V supply

2 Mechanical and electrical specifications

Conditions at V_{DD} = 2.5 V, T = 25 °C, unless otherwise noted.

2.1 Mechanical characteristics

Table 3. Mechanical characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Тор	Operating temperature range		-40	_	85	°C
Tfull	Full accuracy temperature range		0	_	80	°C
Pop	Operating pressure range		260	_	1260	mbar
Pbits	Pressure output data		_	24	_	bits
Pres	Pressure sensitivity		-	4096	_	LSB/ mbar
Paccrel	Relative accuracy over pressure ⁽²⁾	P = 800 to 1100 mbar T= 25°C	-	±0.1	±0.2	mbar
PaccT	Absolute accuracy pressure over temperature ⁽³⁾	P = 800 to 1100 mbar T = 0 ~+80 °C	- 3.2	±2	2.6	mbar
Pnoise	Pressure noise		See Table 17.		mbar RMS	
Tbits	Temperature output data		_	16	-	bits
Tres	Temperature sensitivity		_	480	_	LSB/°C
Tacc	Absolute accuracy temperature	T= 0~+80 °C	_	±2	-	°C

^{1.} Typical specifications are not guaranteed.

^{2.} Characterization data. Parameter not tested at final test

^{3.} Embedded pwl compensation.

2.2 Electrical characteristics

Table 4. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.71	_	3.6	V
Vdd_IO	IO supply voltage		1.71	_	3.6	٧
ldd	Supply current @ ODRp 1 Hz and ODRt = 1Hz		see Table 5			μΑ
IddPdn	Supply current in power-down mode $T = 25 ^{\circ}C$		_	0.5	_	μA

^{1.} Typical specifications are not guaranteed.

Table 5. Supply current at ODRp 1 Hz, ODRt 1 Hz

Symbol	RES_CONF (hex)	Min.	Тур.	Max.	Unit
	73	_	5.5	_	
ldd	75	_	6.6	_	
	77	_	11.5	_	μΑ
	78	_	17.5	_	
	7A	_	30.0	_	

2.3 Absolute maximum ratings

Stress above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 6. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	٧
Vdd_IO	I/O pins supply voltage	-0.3 to 4.8	٧
Vin	Input voltage on any control pin	-0.3 to Vdd_IO +0.3	٧
Р	Overpressure	20	bar
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

Note: Supply voltage on any pin should never exceed 4.8 V.

This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part.

This is an ESD sensitive device, improper handling can cause permanent damage to the part.

Functionality LPS331AP

3 Functionality

The LPS331AP is a high resolution, digital output pressure sensor packaged in an HCLGA holed package. The complete device includes a sensing element based on a piezoresistive Wheatstone bridge approach, and an IC interface able to take the information from the sensing element to the external world, as a digital signal.

3.1 Sensing element

An ST proprietary process is used to obtain a mono-silicon μ -sized membrane for MEMS pressure sensors, without requiring substrate to substrate bonding. When pressure is applied, the membrane deflection induces an imbalance in the Wheatstone bridge piezoresistances, whose output signal is converted by the IC interface.

Intrinsic mechanical stoppers prevent breakage in case of pressure overstress, ensuring measurement repeatability.

The pressure inside the buried cavity under the membrane is constant and controlled by process parameters.

3.2 IC interface

The complete measurement chain consists of a low-noise capacitive amplifier, which converts the resistive unbalance of the MEMS sensor into an analog voltage signal, and of an analog-to-digital converter, which translates the produced signal into a digital bitstream.

The converter is coupled with a dedicated reconstruction filter which removes the high frequency components of the quantization noise and provides low rate and high resolution digital words.

The pressure data can be accessed through an I²C/SPI interface making the device particularly suitable for direct interfacing with a microcontroller.

3.3 Factory calibration

The IC interface is factory calibrated at three temperatures and two pressures for sensitivity and accuracy.

The trimming values are stored inside the device by a non-volatile structure. Whenever the device is turned on, the trimming parameters are downloaded into the registers to be employed during normal operation. This allows the user to employ the device without requiring any further calibration.

LPS331AP Application hints

4 Application hints

 \bigcirc Vdd 16 _____14 10µ [1] 13 Vdd_IO (TOP VIEW Res Г 100nF 9 **6 5 8** Res SDA/SDI/SDO SDO/SA0 S GND Digital signal from/to signal controller. Signal levels are defined through proper selection of Vdd_

Figure 3. LPS331AP electrical connection

The device core is supplied through the Vdd line. Power supply decoupling capacitors (100 nF ceramic, 10 μ F aluminum) should be placed as near as possible to the supply pad of the device (common design practice).

The functionality of the device and the measured data outputs are selectable and accessible through the I²C/SPI interface. When using the I²C, CS must be tied high (i.e. connected to Vdd_IO).

4.1 Soldering information

The HCLGA package is compliant with the ECOPACK® standard and it is qualified for soldering heat resistance according to JEDEC J-STD-020.

Digital interfaces LPS331AP

5 Digital interfaces

5.1 I²C serial interface

The registers embedded in the LPS331AP may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.

The serial interfaces are mapped onto the same pads. To select/exploit the I²C interface, CS line must be tied high (i.e. connected to Vdd_IO).

Pin name	Pin description
CS	SPI enable I ² C/SPI mode selection (1: I ² C mode; 0: SPI enabled)
SCL/	I ² C serial clock (SCL)
SPC	SPI serial port clock (SPC)
SDA/	I ² C serial data (SDA)
SDI/	SPI serial data input (SDI)
SDO	3-wire interface serial data output (SDO)
SA0/	I ² C less significant bit of the device address (SA0)
SDO	SPI serial data output (SDO)

5.2 I²C serial interface

The LPS331AP I^2C is a bus slave. The I^2C is employed to write data into registers whose content can also be read back.

The relevant I²C terminology is given in *Table 8*.

Table 8. Serial interface pin description

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bi-directional line used for sending and receiving the data to/from the interface. Both lines have to be connected to Vdd_IO through pull-up resistors.

The I²C interface is compliant with fast mode (400 kHz) I²C standards as well as with the normal mode.

LPS331AP Digital interfaces

5.2.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A start condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The slave address (SAD) associated to the LPS331AP is 101110xb. The **SDO/SA0** pad can be used to modify the less significant bit of the device address. If the SA0 pad is connected to voltage supply, LSb is '1' (address 1011101b), otherwise if the SA0 pad is connected to ground, the LSb value is '0' (address 1011100b). This solution permits to connect and address two different LPS331APs to the same I²C lines.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded in the LPS331AP behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, a 8-bit sub-address (SUB) will be transmitted: the 7 LSB represents the actual register address while the MSB enables address auto increment. If the MSb of the SUB field is '1', the SUB (register address) will be automatically increased to allow multiple data read/write.

The slave address is completed with a Read/Write bit. If the bit was '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. *Table 9* explains how the SAD+read/write bit pattern is composed, listing all the possible configurations.

Table 9. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	101110	0	1	10111001 (B9h)
Write	101110	0	0	10111000 (B8h)
Read	101110	1	1	10111011 (BBh)
Write	101110	1	0	10111010 (BAh)

Table 10. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 11. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Digital interfaces LPS331AP

Table 12. Transfer when master is receiving (reading) one byte of data from slave

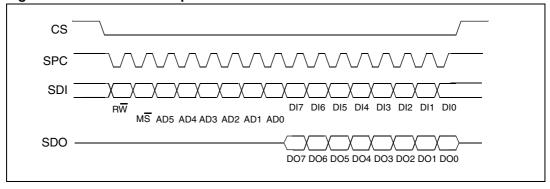
ſ	Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Ī	Slave			SAK		SAK			SAK	DATA		

Table 13. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other functions, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to receive because it is performing some real time function) the data line must be kept HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In order to read multiple bytes incrementing the register address, it is necessary to assert the most significant bit of the sub-address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of the first register to be read.


In the presented communication format MAK is Master acknowledge and NMAK is no master acknowledge.

5.3 SPI bus interface

The LPS331AP SPI is a bus slave. The SPI allows to write and read the registers of the device.

The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.

Figure 4. Read and write protocol

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and returns to high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and

LPS331AP Digital interfaces

SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

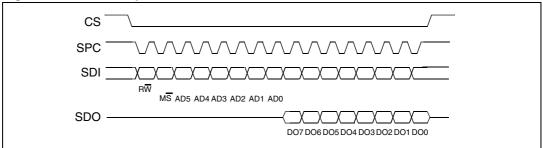
Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in the case of multiple bytes read/write. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: \overline{RW} bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip will drive **SDO** at the start of bit 8.

bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands. When 1, the address will be auto incremented in multiple read/write commands.

bit 2-7: address AD(5:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).


bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods are added. When the \overline{MS} bit is 0 the address used to read/write data remains the same for every block. When \overline{MS} bit is 1 the address used to read/write data is increased at every block.

The function and the behavior of **SDI** and **SDO** remain unchanged.

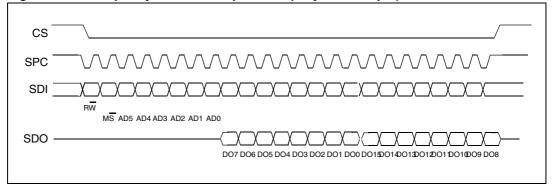
5.3.1 SPI read

Figure 5. SPI read protocol

The SPI Read command is performed with 16 clock pulses. The multiple byte read command is performed adding blocks of 8 clock pulses at the previous one.

bit 0: READ bit. The value is 1.

bit 1: \overline{MS} bit. When 0 do not increment address, when 1 increment address in multiple reading.


bit 2-7: address AD(5:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte readings.

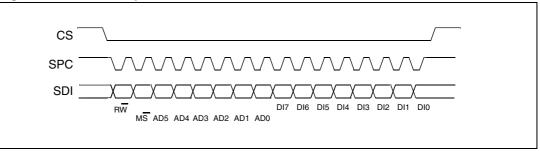

Digital interfaces LPS331AP

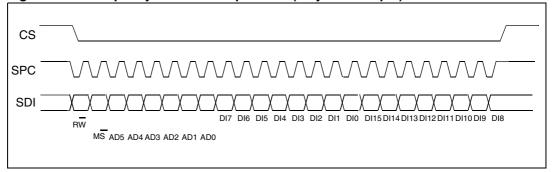
Figure 6. Multiple bytes SPI read protocol (2 bytes example)

5.3.2 SPI write

Figure 7. SPI write protocol

The SPI Write command is performed with 16 clock pulses. The multiple byte write command is performed adding blocks of 8 clock pulses at the previous one.

bit 0: WRITE bit. The value is 0.

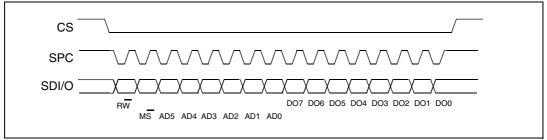

bit 1: \overline{MS} bit. When 0 do not increment the address, when 1 increment the address in multiple writings.

bit 2 -7: address AD(5:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written in the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writings.

Figure 8. Multiple bytes SPI write protocol (2 bytes example)



LPS331AP Digital interfaces

5.3.3 SPI read in 3-wires mode

A 3-wires mode is entered by setting to '1' bit SIM (SPI serial interface mode selection) in CTRL REG4.

Figure 9. SPI read protocol in 3-wires mode

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1: \overline{MS} bit. When 0, do not increment the address, when 1, increment the address in multiple readings.

bit 2-7: address AD(5:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). Multiple read command is also available in 3-wires mode.

Register mapping LPS331AP

6 Register mapping

Table 14 provides a list of the 8-bit registers embedded in the device and the related addresses.

Table 14. Registers address map

Name	T	Register	Address	Default	Function and
Name	Туре	Hex	Binary	Default	comment
Reserved (Do not modify)		00-07 0D - 0E			Reserved
REF_P_XL	R/W	08	0001000	00000000	
REF_P_L	R/W	09	0001001	00000000	
REF_P_H	R/W	0A	0001010	00000000	
WHO_AM_I	R	0F	0001111	10111011	Dummy register
RES_CONF	R/W	10	0010000	011111010	
Reserved (Do not modify)		11-1F			Reserved
CTRL_REG1	R/W	20	010 0000	00000000	
CTRL_REG2	R/W	21	010 0001	00000000	
CTRL_REG3	R/W	22	010 0010	00000000	
INT_CFG_REG	R/W	23	0100011	00000000	
INT_SOURCE_REG	R	24	0100100	00000000	
THS_P_LOW_REG	R/W	25	0100101	0000000	
THS_P_HIGH_REG	R/W	26	0100110	0000000	
STATUS_REG	R	27	010 0111	00000000	
PRESS_POUT_XL_REH	R	28	010 1000	output	
PRESS_OUT_L	R	29	010 1001	output	
PRESS_OUT_H	R	2A	010 1010	output	
TEMP_OUT_L	R	2B	010 1011	output	
TEMP_OUT_H	R	2C	010 1100	output	
Reserved (Do not modify)		2D-2F			Reserved
AMP_CTRL	R/W	30	011 0000		Partially reserved

Registers marked as *Reserved* must not be changed. The writing to those registers may cause permanent damages to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered-up.

7 Register description

The device contains a set of registers which are used to control its behavior and to retrieve pressure and temperature data. The register address, made up of 7 bits, is used to identify them and to read/write the data through the serial interface.

REF_P_XL

Reference pressure (LSB data)

7	6	5	4	3	2	1	0
REFL7	REFL6	REFL5	REFL4	REFL3	REFL2	REFL1	REFL0

 Address:
 08h

 Type:
 R/W

 Reset:
 00h

Description: This reference pressure register contains the lower part of the reference pressure that

is sum to the sensor output pressure. The full value is REF_P_XL & REF_P_H &

REF_P_L and is represented as 2's complement.

[7:0] REFL7 - REFL0: Reference pressure LSB data. Default value: 00h

REF_P_L

Reference pressure (middle part)

16	15	14	13	12	11	10	9	
REFL15	REFL14	REFL13	REFL12	REFL11	REFL10	REFL9	REFL8	

Address: 09h
Type: R/W
Reset: 00h

Description: This register contains the middle part of the reference pressure that is sum to the

sensor output pressure.

The full value is REF_P_XL & REF_P_H & REF_P_L and is represented as 2's

complement.

[16:9] REFL15 - REFL8: Default value: 00h

Register description LPS331AP

REF_P_H

Reference pressure (MSB data)

24	23	22	21	20	19	18	17
REFL23	REFL22	REFL21	REFL20	REFL19	REFL18	REFL17	REFL16

Address: 0Ah
Type: R/W
Reset: 00h

Description: This register contains the higher part of the reference pressure that is sum to the

sensor output pressure.

The full value is REF_P_XL & REF_P_H & REF_P_L and is represented as 2's

complement.

[24:17] REFL23 - REFL16: Reference pressure MSB data. Default value: 00h.

RES_CONF(10h)

Pressure resolution mode

7	6	5	4	3	2	1	0
RFU	AVGT2	AVGT1	AVGT0	AVGP3	AVGP2	AVGP1	AVGP0

Address: 10h
Type: R/W
Reset: 7Ah

Description: AVGP3-AVGP0 allow to select the pressure internal average. AVGT2-AVGT0 allow to

select the temperature internal average.

AVGP3-AVGP0 bits can be configured as described in *Table 15*. AVGT2-AVGT0 bits can be configured as described in *Table 16*.

Table 15. Pressure resolution configuration

AVGP3	AVGP2	AVGP1	AVGP0	Nr. internal average
0	0	0	0	1
0	0	0	1	2
0	0	1	0	4
0	0	1	1	8
0	1	0	0	16
0	1	0	1	32
0	1	1	0	64
0	1	1	1	128
1	0	0	0	256

Table 15. Pressure resolution configuration

AVGP3	AVGP2	AVGP1	AVGP0	Nr. internal average
1	0	0	1	384
1	0	1	0	512 ⁽¹⁾

Register configuration 7Ah not allowed with ODR = 25Hz/25Hz (Register CTRL_REG1). For ORD 25Hz/25Hz the suggested configuration for RES_CONF is 6Ah.

Table 16. Temperature resolution configuration

AVGT2	AVGT1	AVGT1	Nr. internal average
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128 ⁽¹⁾

Register configuration 7Ah not allowed with ODR = 25Hz/25Hz (Register CTRL_REG1). For ORD 25Hz/25Hz the suggested configuration for RES_CONF is 6Ah.

Table 17. Pressure resolution

RES_CONF (hex)	RMS noise ⁽¹⁾	Unit
70	0.450	
71	0.320	
72	0.230	
73	0.160	
74	0.110	
75	0.080	mbar
76	0.060	
77	0.040	
78	0.030	
79	0.025	
7A ⁽²⁾	0.020	

^{1.} Rms noise is calculated as standard deviation of 10 data points.

This configuration is not allowed for ODR = 25Hz/25HZ (register CTRL_REG1). For ORD = 25 Hz/ 25 Hz
the suggested configuration for RES_CONF is 6Ah.

WHO AM I

Device identification

7	6	5	4	3	2	1	0
1	0	1	1	1	0	1	1

Address: 0Fh
Type: R

Description: This read-only register contains the device identifier that, for LPS331AP, is set to BBh.

CTRL_REG1

Control register 1

7	6	5	4	3	2	1	0
PD	ODR2	ODR1	ODR0	DIFF_EN	DBDU	DELTA_EN	SIM

Address: 20h
Type: R/W

Description: Control register.

[7] PD: power down control.

Default value: 0

(0: power-down mode; 1: active mode)

[6:4] ODR2, ODR1, ODR0: output data rate selection.

Default value: 00 (see *Table 18*)

[3] DIFF_EN: Interrupt circuit enable.

Default value: 0

(0: interrupt generation disabled; 1: interrupt circuit enabled)

[2] BDU: block data update.

Default value: 0

(0: continuous update; 1: output registers not updated until MSB and LSB reading)

[1] DELTA_EN: delta pressure enable

(1: delta pressure registers enabled. 0: disable)

[0] SIM: SPI Serial Interface Mode selection.

Default value: 0

(0: 4-wire interface; 1: 3-wire interface)

PD bit allows to turn on the device. The device is in power-down mode when PD = '0' (default value after boot). The device is active when PD is set to '1'.

ODR2- ODR1 - ODR0 bits allow to change the output data rates of pressure and temperature samples. The default value is "000" which corresponds to "one shot configuration" for both pressure and temperature output. ODR2, ODR1 and ODR0 bits can be configured as described in *Table 18*.

Note: Before changing the ODR it is necessary to power down the device (CTRL_REG1[7]).

Temperature output data ODR2 ODR1 ODR0 Pressure output data rate rate 0 0 0 One shot One shot 0 0 1 1 Hz 1 Hz 0 1 0 7 Hz 1 Hz 0 1 1 12.5 Hz 1 Hz 0 1 0 25 Hz 1 Hz 0 1 7 Hz 7 Hz 1 1 1 0 12.5 Hz 12.5 Hz 1 1 1 25 Hz 25 Hz

Table 18. Output data rate bit configurations

DIFF_EN bit is used to enable the circuitry for the computing of differential pressure output. In default mode (DIF_EN='0') the circuitry is turned off. It is suggested to turn on the circuitry only after the configuration of REF_P_x and THS_P_x.

BDU bit is used to inhibit the output registers update between the reading of upper and lower register parts. In default mode (BDU = '0'), the lower and upper register parts are updated continuously. If it is not sure to read faster than output data rate, it is recommended to set BDU bit to '1'. In this way, after the reading of the lower (upper) register part, the content of that output registers is not updated until the upper (lower) part is read too. This feature avoids reading LSB and MSB related to different samples.

SIM bit selects the SPI serial interface mode. When SIM is '0' (default value) the 4-wire interface mode is selected and data coming from the device are sent to pin #7 (SDO). In 3-wire interface mode, output data are sent to pin #6 (SDI/SDO).

Register description LPS331AP

CTRL REG2

Control register 2

7	6	5	4	3	2	1	0
BOOT		RESERVED				AUTO_ZERO	ONE_SHOT

Address: 21h

Type: R/W

Description: Control register.

[7] BOOT: Reboot memory content. Default value: 0(0: normal mode; 1: reboot memory content)

[6:3] RESERVED

[2] Software reset. Default value: 0(0: normal mode; 1: software reset)

[1] Autozero enable. Default value: 0(0: normal mode; 1: autozero enable)

[0] One shot enable. Default value: 0

(0: waiting for start of conversion; 1: start for a new dataset)

BOOT bit is used to refresh the content of the internal registers stored in the Flash memory block. At the device power-up the content of the Flash memory block is transferred to the internal registers related to trimming functions to permit a good behavior of the device itself. If for any reason, the content of the trimming registers is modified, it is sufficient to use this bit to restore the correct values. When BOOT bit is set to '1' the content of the internal Flash is copied inside the corresponding internal registers and is used to calibrate the device. These values are factory trimmed and they are different for every device. They permit good behavior of the device and normally they should not be changed. At the end of the boot process the BOOT bit is set again to '0'.

BOOT bit takes effect after one ODR clock cycle.

SWRESET is the software reset bit. The device is reset to the power on configuration if the SWRESET bit is set to '1' and BOOT is set to '1'.

AUTO_ZERO, when set to '1', the actual pressure output is copied in the REF_P_H & REF_P_L & REF_P_XL and kept as reference and the PRESS_OUT_H & PRESS_OUT_L & PRESS_OUT_XL is the difference between this reference and the pressure sensor value.

ONE_SHOT bit is used to start a new conversion when ODR1-ODR0 bits in CTRL_REG1 are set to "000". In this situation a single acquisition of temperature and pressure is started when ONE_SHOT bit is set to '1'. At the end of conversion the new data are available in the output registers, the STAUS_REG[0] and STAUS_REG[1] bits are set to '1' and the ONE_SHOT bit comes back to '0' by hardware.

CTRL_REG3 Interrupt control

7	6	5	4	3	2	1	0
INT_H_L	PP_OD	INT2_S3	INT2_S2	INT2_S1	INT1_S3	INT1_S2	INT1S1

Address: 22h
Type: R/W

Description: Control register.

[7] INT_H_L: Interrupt active high, low. Default value: 0 (0: active high; 1: active low)

[6] PP_OD: Push-pull/open drain selection on interrupt pads. Default value: 0 (0: push-pull; 1: open drain)

[5:3] INT2_S3, INT2_S2, INT2_S1: data signal on INT2 pad control bits. Default value: 00 (see *Table 19*.)

[2:0 INT1_S3, INT1_S1: data signal on INT1 pad control bits. Default value: 00 (see *Table 19*.)

Table 19. Interrupt configurations

INT1(2)_S3	INT1(2)_S2	INT1(2)S1	INT1(2) pin
0	0	0	GND
0	0	1	Pressure high (P_high)
0	1	0	Pressure low (P_low)
0	1	1	P_low OR P_high
1	0	0	Data ready
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Tri-state

The device features two fully-programmable interrupt sources (*INT1* and *INT2*) which may be configured to trigger different pressure events. *Figure 10* shows the block diagram of the interrupt generation block and output pressure data.

The device may also be configured to generate, through interrupt pins, a Data Ready signal (*Drdy*) which indicates when a new measured pressure data is available, thus simplifying data synchronization in digital systems.

Register description LPS331AP

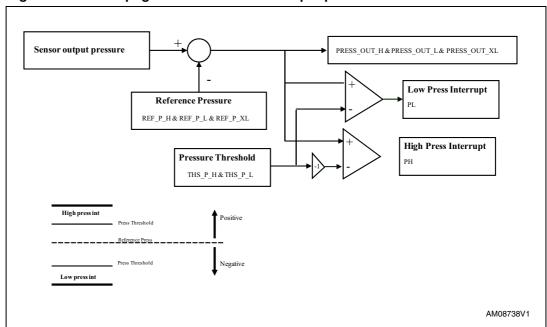


Figure 10. Interrupt generation block and output pressure data.

INTERRUPT_CFG

Interrupt configuration

7	6	5	4	3	2	1	0	
		RESERVED			LIR	PL_E	PH_E	

Address: 23h
Type: R/W
Reset: 00h

Description: Interrupt configuration.

[7:3] RESERVED

- [2] LIR: Latch Interrupt request into INT_SOURCE register. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched)
- [1] PL_E: Enable interrupt generation on differential pressure low event. Default value: 0. (0: disable interrupt request;
 - 1: enable interrupt request on measured differential pressure value lower than preset threshold)
- [0] PH_E: Enable interrupt generation on differential pressure high event. Default value: 0
 (0: disable interrupt request;
 1:enable interrupt request on measured differential pressure value higher than preset threshold)

INT_SOURCE Interrupt source

7	6	5	4	3	2	1	0
0	0	0	0	0	IA	PL	PH

Address: 24h
Type: R
Reset: 00h

Description: INT_SOURCE register is cleared by reading INT_ACK register.

[7:3] 0

[2] IA: Interrupt Active.

(0: no interrupt has been generated; 1: one or more interrupt events have been generated).

[1] PL: Differential pressure Low.

(0: no interrupt has been generated; 1: Low differential pressure event has occurred).

[0] PH: Differential pressure High.

(0: no interrupt has been generated; 1: High differential pressure event has occurred).

THS_P_L

Threshold pressure (LSB)

7	6	5	4	3	2	. 1	0
THS7	THS6	THS5	THS4	THS3	THS2	THS1	THS0

 Address:
 25h

 Type:
 R/W

 Reset:
 00h

Description: This register contains the low part of threshold value for pressure interrupt

generation. The complete threshold value is given by THS_P_H & THS_P_L and is

expressed as unsigned number.

[7:0] THS7 - THS0: Threshold pressure LSB. Default value: 00h.

Register description LPS331AP

THS_P_H

Threshold pressure (MSB)

15	14	13	12	11	10	9	8
THS15	THS14	THS13	THS12	THS11	THS10	THS9	THS8

Address: 26h
Type: R/W
Reset: 00h

Description: This register contains the high part of the threshold value for pressure interrupt

generation.

The complete threshold value is given by THS_P_H & THS_P_L and is expressed as

unsigned number. P_ths(mbar)=(THS_P_H & THS_P_L)[dec]/16.

[15:8] THS7 - THS0: Threshold pressure MSB. Default value: 00h.

STATUS_REG

Status register

7	6	5	4	3	2	1	0
0	0	P_OR	T_OR	0	0	P_DA	T_DA

Address: 27h

Type: R

Reset: 00h

Description: The content of this register is updated every ODR cycle, regardless of BDU value in

CTRL_REG1.

P_DA is set to 1 whenever a new pressure sample is available. P_DA is cleared anytime PRESS_OUT_H (29h) register is read.

T_DA is set to 1 whenever a new temperature sample is available. T_DA is cleared anytime TEMP_OUT_H (2Bh) register is read.

P_OR bit is set to '1' whenever new pressure data is available and P_DA was set in the previous ODR cycle and not cleared. P_OR is cleared anytime PRESS_OUT_H (29h) register is read.

T_OR is set to '1' whenever new temperature data is available and T_DA was set in the previous ODR cycle and not cleared. T_OR is cleared anytime TEMP_OUT_H (2Bh) register is read.

[7:6] 0

[5] P_OR: Pressure data overrun. Default value: 0

(0: no overrun has occurred;

1: new data for pressure has overwritten the previous one)

[4] T OR: Temperature data overrun. Default value: 0

(0: no overrun has occurred;

1: a new data for temperature has overwritten the previous one)

[3:2] 0

[1] P_DA: Pressure data available. Default value: 0

(0: new data for pressure is not yet available;

1: new data for pressure is available)

[0] T_DA: Temperature data available. Default value: 0

(0: new data for temperature is not yet available;

1: new data for temperature is available)

PRESS_OUT_XL

Pressure data (LSB)

7	6	5	4	3	2	1	0
POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0

Address: 28h

Type: R

Reset: 00h

Description: Pressure data.

[7:0] POUT7 - POUT0: Pressure data LSB

PRESS_OUT_L

9	8

Pressure data

15	14	10	12	11	10	3	U
POUT15	POUT14	POUT13	POUT12	POUT11	POUT10	POUT9	POUT8

Address: 29h

Type: R

Reset: 80

Description: Pressure data.

[15:8] POUT15 - POUT8: Pressure data

Register description LPS331AP

PRESS_OUT_H (2Ah)

Pressure data (MSB)

24	23	22	21	20	19	18	17
POUT23	POUT22	POUT21	POUT20	POUT19	POUT18	POUT17	POUT16

Address: 2Ah
Type: R
Reset: 2F

Description: Pressure data are expressed as PRESS_OUT_H & PRESS_OUT_L &

PRESS_OUT_XL in 2's complement. Values exceeding the operating pressure

Range (see Table 3) are clipped.

Pressure output data: Pout(mbar)=(PRESS_OUT_H & PRESS_OUT_L &

PRESS_OUT_XL)[dec]/4096

[24:17] POUT23 - POUT16: Pressure data MSB

TEMP_OUT_L (2Bh)

Temperature data (LSB)

7	6	5	4	3	2	1	0	
TOUT7	TOUT6	TOUT5	TOUT4	TOUT3	TOUT2	TOUT1	TOUT0	

Address: 2Bh Type: R

Reset: 00h

[7:0] TOUT7 - TOUT0: temperature data LSBI

TEMP_OUT_H (2Ch)

Temperature data (MSB)

15	14	13	12	11	10	9	8
TOUT	15 TOUT14	TOUT13	TOUT12	TOUT11	TOUT10	TOUT9	TOUT8

Address: 2Ch
Type: R
Reset: 00h

[15:8] TOUT15 - TOUT8: temperature data MSB.

Temperature data are expressed as TEMP_OUT_H & TEMP_OUT_L as 2's complement numbers.

Temperature output data:

 $T(degC) = 42.5 + (Temp_OUTH & TEMP_OUT_L)[dec]/480$

Register description LPS331AP

AMP_CTRL

Analog front end control

Address: 2Dh
Type: R/W
Reset: 00h

[7:1] RESERVED

[0] SELMAIN: Current of operational amplifier selector

'1' always high current

'0' high current during pressure acquisition and low current during temperature acquisition

DELTA_PRESS_XL (3Ch)

Pressure offset

7	6	5	4	3	2	1	0
DELTA7	DELTA6	DELTA5	DELTA4	DELTA3	DELTA2	DELTA1	DELTA0

Address: 3Ch
Type: R/W
Reset: 00h

[7:0] DELTA0 - DELTA7: Delta pressure register for One Point calibration

DELTA_PRESS_L (3Dh)

Pressure offset

15	14	13	12	11	10	9	8
DELTA15	DELTA14	DELTA13	DELTA12	DELTA11	DELTA10	DELTA9	DELTA8

Address: 3Dh
Type: R/W
Reset: 00h

[15:8] DELTA15-DELTA8: Delta pressure register for One Point calibration

DELTA_PRESS_L (3Eh)

Pressure offset

:	24	23	22	21	20	19	18	17
DEI	TA23	DELTA22	DELTA21	DELTA20	DELTA19	DELTA18	DELTA17	DELTA16

Address: 3Eh
Type: R/W
Reset: 00h

[23:16] DELTA23-DELTA16: Delta pressure register for One Point calibration

DELTA_PRESS registers are used to store the one point calibration value to eliminate accuracy shift after soldering. DELTA_PRESS acts on the output pressure when CTRL_REG1[1] DELTA_EN is set to '1'.

8 Package mechanical section

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 11. Package outline for HCLGA-16L (3 x 3 x 1 mm) E1 E3 $\triangle \mathsf{K}$ D 23 \Box ψKE Ε seating plane С TOP VIEW Pin 1 Indicator d Z L1 BOTTOM VIEW

Table 20. HCLGA-16L (3 x 3 x 1 mm) mechanical data

Symbol	Millimeters						
Symbol	Min	Тур	Max				
E1	2.850	3.000	3.150				
E3	-	0	-				
D1	2.850	3.000	3.150				
D3	-	0.700	-				
R1	-	0.400	-				
A1	-	1.000	-				
L1	-	1.000	-				
N1	-	0.500	-				
L2	-	2.000	-				
N2	-	1.000	-				
P1	-	0.875	-				
P2	-	1.275	-				
T1	-	0.350	-				
T2	-	0.250	-				
d	-	0.150	-				
K	-	0.050	-				
М	_	0.100	-				

Figure 12. Tray information

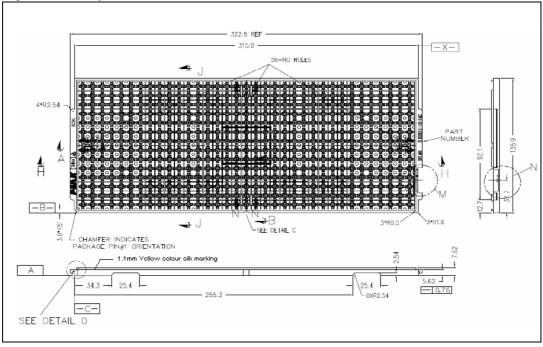
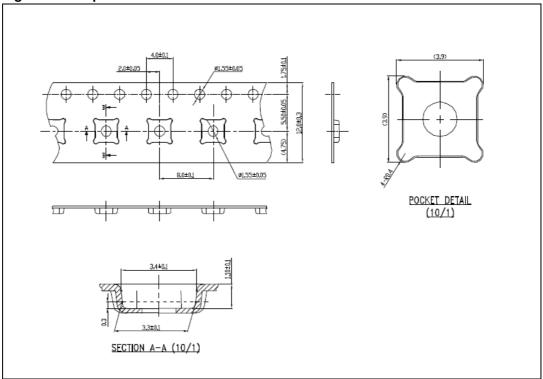



Figure 13. Tape information

LPS331AP Revision history

9 Revision history

Table 21. Document revision history

Date	Revision	Changes
12-Aug-2011	1	Initial release.
16-Aug-2011	2	 Updated order code in <i>Table 1: Device summary</i> Minor formatting and text modifications throughout the document
20-Oct-2011	3	 Updated: features list, Table 3, Table 6, Section 4 and Section 7. Added: Table 17, Figure 12 and Figure 13.
15-Dec-2011	4	 Modified: minor text updates in the Features section, Table 3, Table 4, Table 5, Section 3.1: Sensing element and Figure 11.
13-Jan-2012	5	Modified: - Temperature range in <i>Table 1</i> from "-20 to +105" to "-40 to +85". - Temperature output data in register <i>TEMP_OUT_H</i> (2Ch) from "42.5" to "22.5". - PaccT test condition data in <i>Table 3</i> from "P = 260 to 1260 mbar" to "P = 800 to 1100 mbar" - Device operating range in <i>Description on page 1</i> from "-20 °C to +105 °C" to "-40 °C to +85 °C"
27-Feb-2012	6	Document status promoted from preliminary data to datasheet. Modified: - Temperature output data in register TEMP_OUT_H (2Ch) from "22.5" to "42.5" - Added register address in register DELTA_PRESS_XL (3Ch) and modified register address in DELTA_PRESS_L from "3Dh" to "3Eh".
29-Mar-2012	7	Modified the description for pin 14 in <i>Table 2</i> and the list of applications in the cover page.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES. ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

36/36 Doc ID 022112 Rev 7

