STD4N90K5

N-channel 900 V, 1.90 Ω typ.,3 A MDmesh™ K5 Power MOSFET in a DPAK package

Datasheet - production data

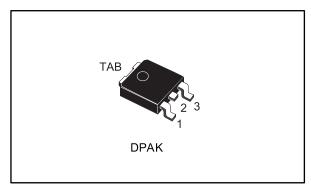
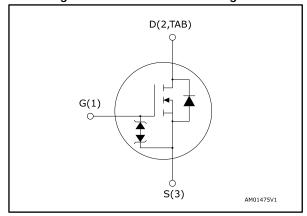



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STD4N90K5	900 V	2.10 Ω	3 A

- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STD4N90K5	4N90K5	DPAK	Tape and reel

Contents STD4N90K5

Contents

1	Electric	eal ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK package information	9
	4.2	DPAK packing information	12
5	Revisio	n history	14

STD4N90K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 30	V
I_{D}	Drain current (continuous) at T _C = 25 °C	3	Α
I _D	Drain current (continuous) at T _C = 100 °C	1.9	Α
I _D ⁽¹⁾	Drain current (pulsed)	12	Α
P _{TOT}	Total dissipation at T _C = 25 °C	60	W
dv/dt (2)	Peak diode recovery voltage slope	4.5	V/ns
dv/dt (3)	MOSFET dv/dt ruggedness	50 V	
Tj	Operating junction temperature range	FE to 150	°C
T _{stg}	Storage temperature range	- 55 to 150	.0

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Notes

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	1	Α
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	160	mJ

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}I_{SD} \leq 3$ A, di/dt \leq 100 A/µs; VDS peak < V(BR)DSS, VDD = 450 V.

 $^{^{(3)}}V_{DS} \le 720 \text{ V}$

 $^{^{(1)}\!}When$ mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 s.

Electrical characteristics STD4N90K5

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	900			٧
		$V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V}$ $T_{C} = 125 {}^{\circ}\text{C}^{(1)}$			50	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DD} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	٧
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 1.5 \text{ A}$		1.90	2.10	Ω

Notes:

Table 6: Dynamic

Table of Dynamic						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	173	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	17.9	-	pF
Crss	Reverse transfer capacitance	VGS = 0 V	-	1	-	pF
Co(tr) ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 720 V,	-	29	-	pF
C _{o(er)} (2)	Equivalent capacitance energy related	V _{GS} = 0 V	-	11	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	15.5	-	Ω
Qg	Total gate charge	V _{DD} = 720 V, I _D = 3 A	-	5.3	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	1.45	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	2.8	-	nC

Notes:

 $^{^{\}left(1\right)}$ Defined by design, not subject to production test.

 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 450 V, I _D = 1.50 A,	-	10.5	-	ns
tr	Rise time	$R_G = 4.7 \Omega$	-	11.8	-	ns
t _{d(off)}	Turn-off delay time	V _{GS} = 10 V (see <i>Figure 14: "Test</i>	-	26.4	-	ns
t _f	Fall time	circuit for resistive load switching times" and Figure 19: "Switching time waveform")	-	25.5	-	ns

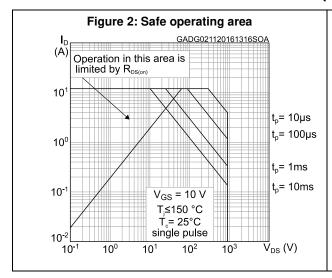
Table 8: Source-drain diode

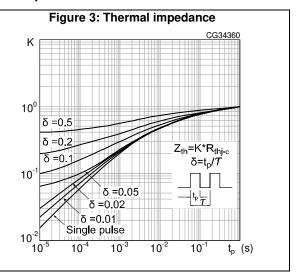
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		3	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		12	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 3 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 3 \text{ A}, \text{ di/dt} = 100$	-	289		ns
Qrr	Reverse recovery charge	A/μs,V _{DD} = 60 V (see <i>Figure 16: "Test</i>	1	1.56		μC
IRRM	Reverse recovery current	circuit for inductive load switching and diode recovery times")	-	10.8		Α
t _{rr}	Reverse recovery time	$I_{SD} = 3 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	494		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see <i>Figure 16: "Test</i> "	-	2.45		μC
IRRM	Reverse recovery current	circuit for inductive load switching and diode recovery times")	-	9.9		Α

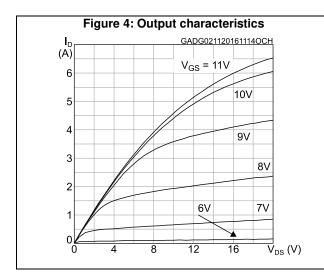
Notes:

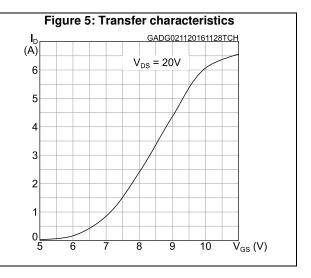
Table 9: Gate-source Zener diode

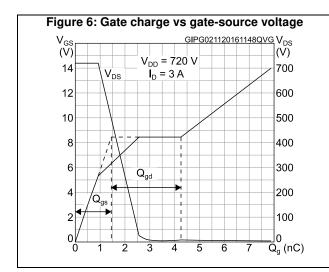
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_{D} = 0 \text{ A}$	30	-	-	٧

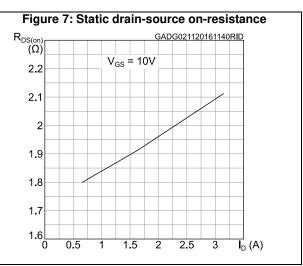

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.




⁽¹⁾Pulse width limited by safe operating area


 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%


2.1 Electrical characteristics (curves)



STD4N90K5 Electrical characteristics

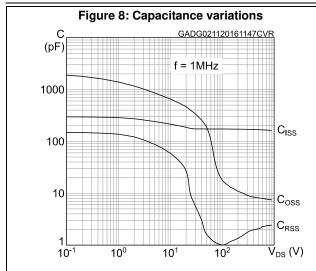


Figure 10: Normalized on-resistance vs temperature $R_{DS(on)}$ (norm.) $V_{GS} = 10 \text{ V}$ $V_{GS} = 10$

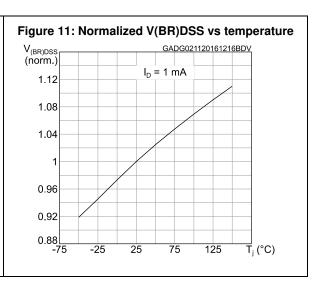
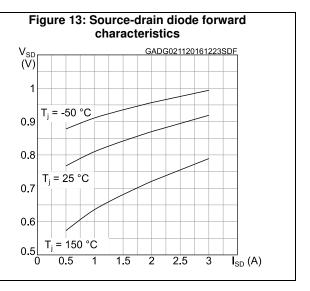


Figure 12: Maximum avalanche energy vs starting TJ

EAS GADG021120161218EAS (MJ)

Single pulse


160

120

80

40

-75 -25 25 75 125 T_J (°C)

STD4N90K5 **Test circuits**

3 **Test circuits**

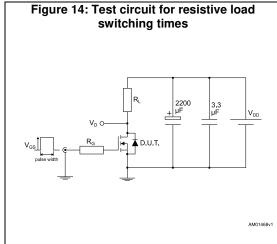


Figure 15: Test circuit for gate charge behavior RL I_G= CONST 100 Ω $2.7 \ k\Omega$ 47 kΩ AM01469v10

Figure 16: Test circuit for inductive load switching and diode recovery times

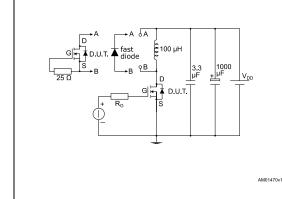


Figure 17: Unclamped inductive load test circuit

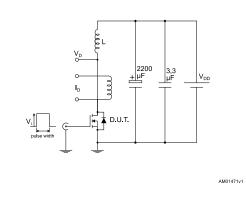


Figure 18: Unclamped inductive waveform

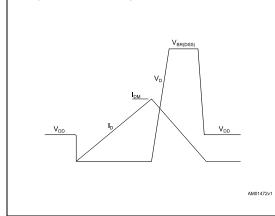
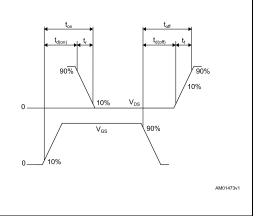



Figure 19: Switching time waveform

STD4N90K5 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK package information

THERMAL PAD <u>c</u>2 L2 <u>b(</u>2x) R SEATING PLANE (L1) 0,25 0068772_A_21

Figure 20: DPAK (TO-252) type A package outline

Table 10: DPAK (TO-252) type A mechanical data

Table 10. DFAK (10-232) type A mechanical data					
Dim.		mm			
Dilli.	Min.	Тур.	Max.		
Α	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1	4.95	5.10	5.25		
Е	6.40		6.60		
E1	4.60	4.70	4.80		
е	2.16	2.28	2.40		
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)	2.60	2.80	3.00		
L2	0.65	0.80	0.95		
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

STD4N90K5 Package information

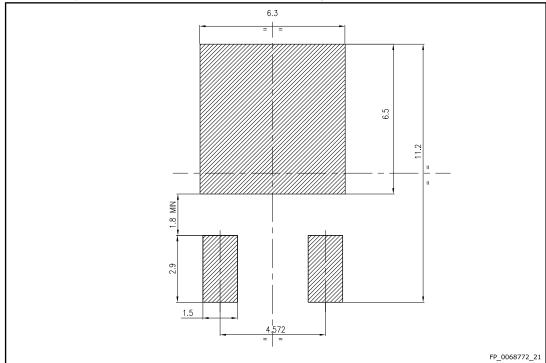
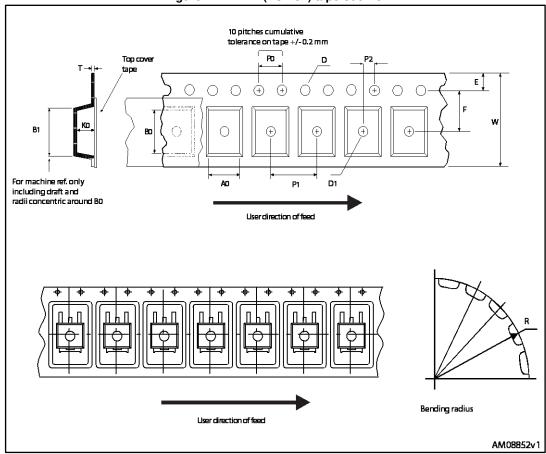



Figure 21: DPAK (TO-252) recommended footprint (dimensions are in mm)

Package information STD4N90K5

4.2 DPAK packing information

Figure 22: DPAK (TO-252) tape outline

40mm min. access hole at slot location С Ν G measured Tape slot at hub in core for Full radius tape start 2.5mm min.width

Figure 23: DPAK (TO-252) reel outline

Table 11: DPAK (TO-252) tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty. 2500		2500
P1	7.9	8.1	Bulk qty. 2500		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

AM06038v1

Revision history STD4N90K5

5 Revision history

Table 12: Document revision history

Date	Revision	Changes
02-Nov-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

