

CY7C1071DV33

32-Mbit (2 M × 16) Static RAM

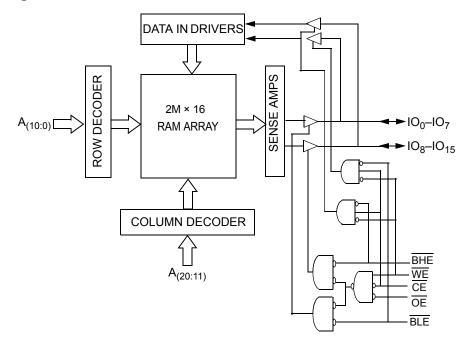
Features

■ High speed □ t_{AA} = 12 ns

- Low active power □ I_{CC} = 250 mA at 83.3 MHz
- Low Complementary Metal Oxide Semiconductor (CMOS) standby power
 I_{SB2} = 50 mA
- Operating voltages of 3.3 ± 0.3 V
- 2.0 V data retention
- Automatic power down when deselected
- TTL compatible inputs and outputs
- Available in Pb-free 48-ball FBGA package

Functional Description

The CY7C1071DV33 is a high performance CMOS Static RAM organized as 2,097,152 words by 16 bits. The input and output pins (I/O_0 through I/O_{15}) are placed in a high impedance state when:


- Deselected (CE HIGH)
- Outputs are disabled (OE HIGH)
- <u>Both</u> byte high enable and byte low enable are disabled (BHE, BLE HIGH)
- The write operation is active (CE LOW and WE LOW)

To write to the device, take Chip Enable $\overline{(CE)}$ and Write Enable $\overline{(WE)}$ inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified on the address pins (A₀ through A₂₀). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₂₀).

To read <u>from</u> the device, take Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See the Truth Table on page 10 for a complete description of read and write modes.

For a complete list of related documentation, click here.

Logic Block Diagram

Cypress Semiconductor Corporation Document Number: 001-12063 Rev. *J 198 Champion Court

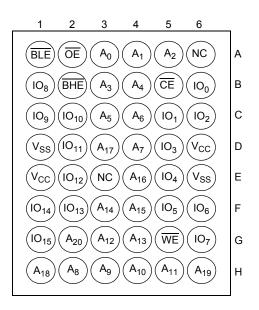
San Jose, CA 95134-1709 • 408-943-2600 Revised November 18, 2014

CY7C1071DV33

Contents

Selection Guide	3
Pin Configuration	3
Maximum Ratings	4
Operating Range	
DC Electrical Characteristics	
Capacitance	
Thermal Resistance	
AC Test Loads and Waveforms	5
Data Retention Characteristics	5
AC Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	
Ordering Code Definitions	
Package Diagram	11
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	14
Products	14
PSoC Solutions	14



Selection Guide

Description	-12	Unit
Maximum Access Time	12	ns
Maximum Operating Current	250	mA
Maximum CMOS Standby Current	50	mA

Pin Configuration

Figure 1. 48-ball FBGA [1]

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature	. –65 °C to +150 °C
Ambient Temperature with Power Applied	. –55 °C to +125 °C
Supply Voltage on V_{CC} Relative to GND ^[2]	–0.3 V to +4.6 V
DC Voltage Applied to Outputs in High Z State ^[2] (0.5 V to V _{CC} + 0.5 V

DC Input Voltage ^[2]	–0.5 V to V _{CC} + 0.5 V
Current into Outputs (LOW)	
Static Discharge Voltage	> 2001 V
(MIL-STD-883, Method 3015)	
Latch up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Industrial	–40 °C to +85 °C	$3.3~V\pm0.3~V$

DC Electrical Characteristics

Over the Operating Range

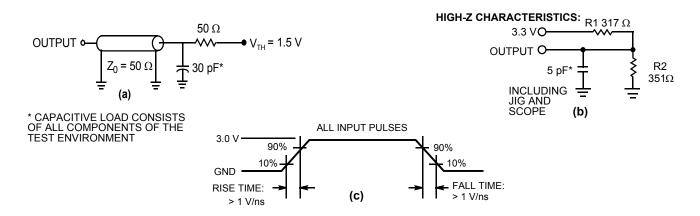
Parameter	Description	Test Conditions	-	12	Unit
Farameter	Description	Test conditions	Min	Unit	
V _{OH}	Output HIGH Voltage	Min V _{CC} , I_{OH} = -4.0 mA	2.4	-	V
V _{OL}	Output LOW Voltage	Min V _{CC} , I _{OL} = 8.0 mA	-	0.4	V
V _{IH} ^[2]	Input HIGH Voltage		2.0	V _{CC} + 0.3	V
V _{IL} ^[2]	Input LOW Voltage		-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_{IN} \leq V_{CC}$	-1	+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}$, Output Disabled	-1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	V_{CC} = Max, f = f _{max} = 1/t _{RC} , I _{OUT} = 0 mA CMOS levels	-	250	mA
I _{SB1}	Automatic CE Power Down Current – TTL Inputs	$ \begin{array}{l} \text{Max } V_{CC}, \ \overline{CE} \geq V_{IH}, V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, \\ f = f_{max} \end{array} $	_	60	mA
I _{SB2}	Automatic CE Power Down Current – CMOS Inputs	$ \begin{split} & \text{Max V}_{\text{CC}}, \ \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V}, \\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V}, \text{ or } \text{V}_{\text{IN}} \leq 0.3 \text{ V}, \text{ f} = 0, \\ & \text{V}_{\text{CC}} = \text{V}_{\text{CC}(\text{max})} \end{split} $	-	50	mA

Capacitance

Parameter ^[3]	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	T _A = 25 °C, f = 1 MHz, V _{CC} = 3.3 V	16	pF
C _{OUT}	I/O Capacitance		20	pF

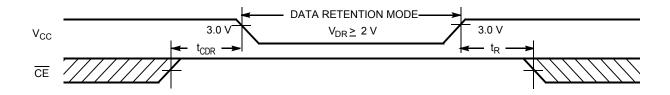
Thermal Resistance

Parameter ^[3]	neter ^[3] Description Test Conditions		48-ball FBGA	Unit
- JA	Thermal Resistance (Junction to Ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	24.72	°C/W
- 30	Thermal Resistance (Junction to Case)		5.79	°C/W


Notes

2. $V_{IL(min)} = -2.0 \text{ V}$ and $V_{IH(max)} = V_{CC} + 1 \text{ V}$ for pulse durations of less than 20 ns. 3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms



Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Тур	Мах	Unit
V _{DR}	V_{CC} for Data Retention		2	_	_	V
I _{CCDR}	Data Retention Current	$V_{CC} = 2 \text{ V}, \overline{CE} \ge V_{CC} - 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$	_	-	50	mA
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0	-	_	ns
t _R [6]	Operation Recovery Time		t _{RC}	-	_	ns

Figure 3. Data Retention Waveform

Notes

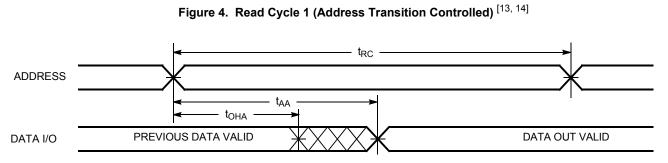
- Valid SRAM operation does not occur until the power supplies reach the minimum operating V_{DD} (3.0 V). 100 μ s (t_{power}) after reaching the minimum operating V_{DD} , normal SRAM operation begins to include reduction in V_{DD} to the data retention (V_{CCDR} , 2.0 V) voltage. Tested initially and after any design or process changes that may affect these parameters. 4.
- 5.
- Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 50 μs or stable at V_{CC(min)} ≥ 50 μs.

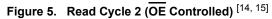
AC Switching Characteristics

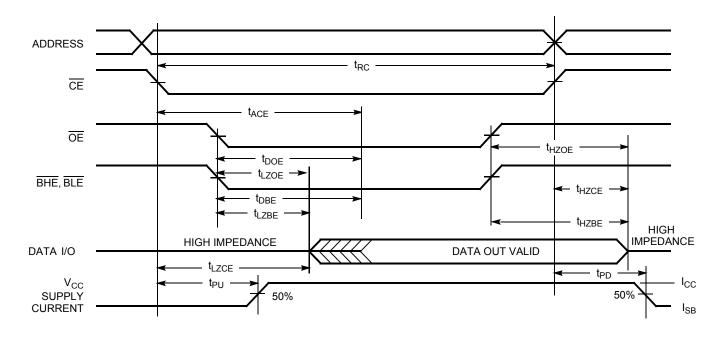
Over the Operating Range ^[7]

Parameter	Description	-	12	Unit
Parameter	Description	Min	Min Max	
Read Cycle	·			
t _{power}	V _{CC(typ)} to the first access ^[8]	100	-	μS
t _{RC}	Read Cycle Time	12	-	ns
t _{AA}	Address to Data Valid	-	12	ns
t _{OHA}	Data Hold from Address Change	3	-	ns
t _{ACE}	CE LOW to Data Valid	-	12	ns
t _{DOE}	OE LOW to Data Valid	-	7	ns
t _{LZOE}	OE LOW to Low Z ^[9]	1	-	ns
t _{HZOE}	OE HIGH to High Z ^[9]	-	7	ns
t _{LZCE}	CE LOW to Low Z ^[9]	3	-	ns
t _{HZCE}	CE HIGH to High Z ^[9]	_	7	ns
t _{PU}	CE LOW to Power Up ^[10]	0	-	ns
t _{PD}	CE HIGH to Power Down ^[10]	-	12	ns
t _{DBE}	Byte Enable to Data Valid	-	7	ns
t _{LZBE}	Byte Enable to Low Z ^[9]	1	-	ns
t _{HZBE}	Byte Disable to High Z ^[9]	_	7	ns
Write Cycle [11, 12]			
t _{WC}	Write Cycle Time	12	-	ns
t _{SCE}	CE LOW to Write End	9	-	ns
t _{AW}	Address Setup to Write End	9	-	ns
t _{HA}	Address Hold from Write End	0	-	ns
t _{SA}	Address Setup to Write Start	0	-	ns
t _{PWE}	WE Pulse Width	9	-	ns
t _{SD}	Data Setup to Write End	7	-	ns
t _{HD}	Data Hold from Write End	0	-	ns
t _{LZWE}	WE HIGH to Low Z ^[9]	3	-	ns
t _{HZWE}	WE LOW to High Z ^[9]	-	7	ns
t _{BW}	Byte Enable to End of Write	9	_	ns

Notes


Test conditions are based on signal transition time of 3 ns or less and timing reference levels of 1.5 V and input pulse levels of 0 to 3.0 V. Test conditions for the read cycle use output loading shown in part (a) of Figure 2 on page 5, unless specified otherwise.
 t_{power} is the minimum amount of time that the power supply must be at typical V_{CC} values until the first memory access can be performed.
 t_{HZOE}, t_{HZCE}, t_{HZWE}, t_{HZBE} and t_{LZOE}, t_{LZCE}, t_{LZWE}, t_{LZBE} are specified with a load capacitance of 5 pF as in (b) of Figure 2 on page 5. Transition is measured at ±200 mV from steady-state voltage.


10. These parameters are guaranteed by design and are not tested. 11. The internal memory write time is defined by the overlap of \overrightarrow{CE} , $\overrightarrow{WE} = V_{IL}$. Chip enables must be active and \overrightarrow{WE} and byte enables must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data setup and hold timing must be referenced to the leading edge of the signal that terminates the write.


12. The minimum write cycle time for Write Cycle 2 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Notes

13. <u>Device</u> is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} or \overline{BHE} or both = V_{IL}. 14. WE is HIGH for read cycle. 15. Address valid before or similar to \overline{CE} transition LOW.

Switching Waveforms (continued)

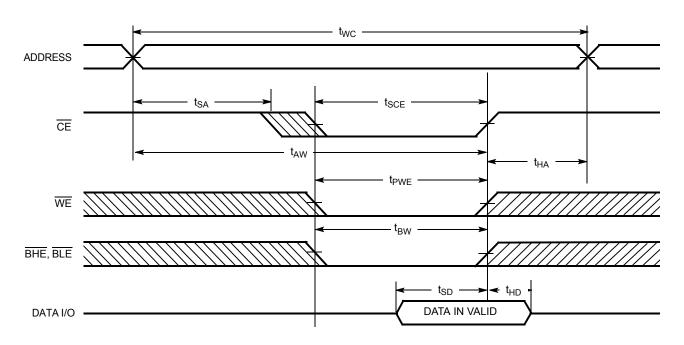
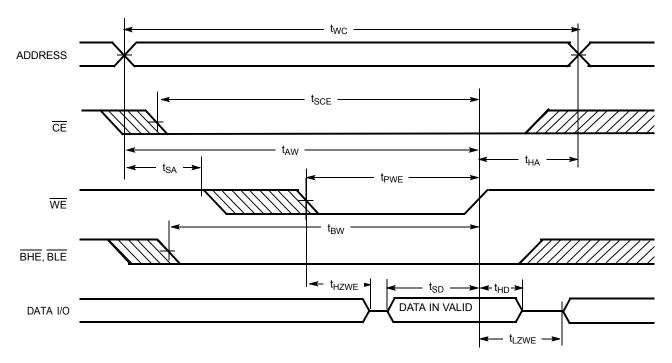
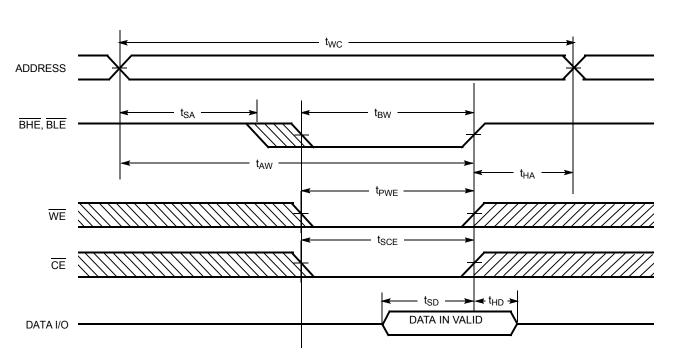



Figure 6. Write Cycle 1 (CE Controlled) ^[16, 17]

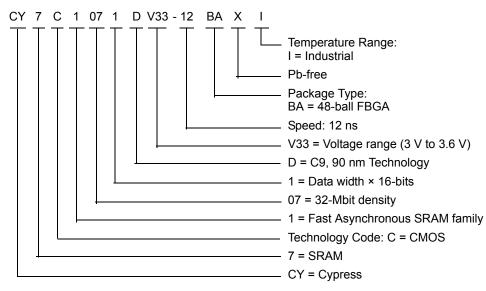


Notes

16. D<u>ata</u> I/O is high impedance if OE or B<u>HE</u>, BLE or both = V_{IH}. 17. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high impedance state.

Switching Waveforms (continued)

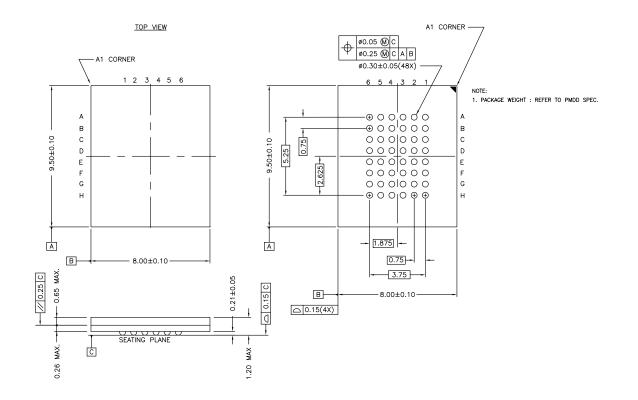
Figure 8. Write Cycle 3 (BLE or BHE Controlled)


Truth Table

CE	OE	WE	BLE	BHE	I/O ₀ –IO ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power-down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All Bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read Lower Bits Only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper Bits Only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All Bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write Lower Bits Only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C1071DV33-12BAXI	51-85191	48-ball FBGA (8 × 9.5 × 1.2 mm) (Pb-free)	Industrial


Ordering Code Definitions

Package Diagram

Figure 9. 48-ball FBGA (8 × 9.5 × 1.2 mm) BA48J Package Outline, 51-85191

51-85191 *C

Acronyms

Acronym	Description		
CE	chip enable		
CMOS	complementary metal oxide semiconductor		
FPBGA	fine-pitch ball grid array		
I/O	input/output		
OE	output enable		
SRAM	static random access memory		
TTL	transistor-transistor logic		
WE	write enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
MHz	megahertz	
μA	microampere	
μs	microsecond	
mA	milliampere	
mm	millimeter	
ms	millisecond	
mV	millivolt	
ns	nanosecond	
Ω	ohm	
%	percent	
pF	picofarad	
V	volt	
W	watt	

Document History Page

REV.	ECN NO.	Submission Date	Orig. of Change	Description of Change
**	605460	See ECN	VKN	New Data sheet
*A	1192183	See ECN	VKN / KKVTMP	Removed CE_2 feature Updated block diagram Changed I _{CC} spec from 160 mA to 225 mA Changed C _{IN} spec from 8 pF to 10 pF Changed C _{OUT} spec from 10 pF to 12 pF Changed t _{BW} spec from 8 ns to 9 ns
*В	2711136	05/29/2009	VKN / PYRS	Added 10 ns speed bin In 12 ns speed bin, changed I_{SB1} from 70 to 60 mA and I_{SB2} from 60 to 50 m/ Changed C_{IN} from 8 pF to 16 pF and C_{OUT} from 10 pF to 20 pF Changed Θ_{JA} from 28.37 °C/W to 24.72 °C/W Removed 119-Ball PBGA package Added 48-Ball FBGA package
*C	2759408	09/03/2009	VKN / AESA	Removed 10ns speed Marked thermal specs as "TBD" Changed t _{DOE} , t _{HZOE} , t _{HZCE} , t _{DBE} , t _{HZBE} , t _{HZWE} specs from 6 ns to 7ns Added -12B2XI part (Dual CE option)
*D	2813370	11/23/2009	VKN	Changed I _{CC} spec from 225 mA to 250 mA.
*E	2925803	04/30/2010	VKN / AESA	Converted from Preliminary to Final Removed Dual CE option from the data sheet Updated links in Sales, Solutions, and Legal Information
*F	3109063	12/13/2010	AJU	Added Ordering Code Definitions.
*G	3132969	01/11/2011	AJU	Added Acronyms and Units of Measure. Changed all instances of IO to I/O. Updated in new template.
*H	3268861	05/28/2011	AJU	Updated Functional Description (Removed "For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.").
*	3411360	10/17/2011	TAVA	Updated Features. Updated DC Electrical Characteristics. Updated Switching Waveforms. Updated Package Diagram.
*J	4573215	11/18/2014	TAVA	Added related documentation hyperlink in page 1. Updated Figure 9 in Package Diagram (spec 51-85191 *B to *C).

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2007-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-12063 Rev. *J

Revised November 18, 2014

All products and company names mentioned in this document may be the trademarks of their respective holders.