3 V, SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER FOR MOBILE COMMUNICATIONS

UPC8181TB

FEATURES

HIGH-DENSITY SURFACE MOUNTING: 6-pin super minimold package (2.0 x 1.25 x 0.9 mm)

• SUPPLY VOLTAGE: Vcc = 2.7 to 3.3 V

• CIRCUIT CURRENT:

Icc = 23.0 mA TYP at Vcc = 3.0 V

• MEDIUM OUTPUT POWER:

PO(1dB) = +8.0 dBm TYP at f = 0.9 GHz PO(1dB) = +7.0 dBm TYP at f = 1.9 GHzPO(1dB) = +7.0 dBm TYP at f = 2.4 GHz

POWER GAIN:

GP = 19.0 dB TYP at f = 0.9 GHz GP = 21.0 dB TYP at f = 1.9 GHzGP = 22.0 dB TYP at f = 2.4 GHz

• UPPER LIMIT OPERATING FREQUENCY:

fu = 4.0 GHz TYP at 3 dB bandwidth (Standard value)

DESCRIPTION

The UPC8181TB is a silicon Monolithic Microwave Integrated Circuit designed as an amplifier for mobile communications. This IC operates at 3 volts. The medium output power is suitable for RF-TX of mobile communication systems.

This IC is manufactured using NEC's 30 GHz f_{max} UHS0 (\underline{U} ltra \underline{H} igh \underline{S} peed process) silicon bipolar process. This process uses direct silicon nitride passivation film and gold electrodes. These materials can protect the chip surface from pollution and prevent corrosion/migration. This IC has excellent performance, uniformity, and reliability.

NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

APPLICATIONS

 Buffer amplifiers for 1.9 GHz to 2.4 GHz mobile communication systems.

ELECTRICAL CHARACTERISTICS

 $(TA = 25^{\circ}C, VCC = VOUT = 3.0 \text{ V}, ZS = ZL = 50\Omega)$

PART NUMBER PACKAGE OUTLINE				UPC8181TB S06		
SYMBOLS	PARA	AMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
Icc	Circuit Current (no signal)		mA	-	23.0	30.0
GР	Power Gain,	f = 0.9 GHz f = 1.9 GHz f = 2.4 GHz	dB	16.0 18.0 19.0	19.0 21.0 22.0	22.0 24.0 25.0
NF	Noise Figure,	f = 0.9 GHz f = 1.9 GHz f = 2.4 GHz	dB	- - -	4.5 4.5 4.5	6.0 6.0 6.0
fu	Upper Limit Operating Frequency, 3 dB down below from gain at f = 0.1 GHz		GHz	_	4.0	_
ISL	Isolation,	f = 0.9 GHz f = 1.9 GHz f = 2.4 GHz	dB	28.0 27.0 26.5	33.0 32.0 31.5	- - -
RLin	Input Return Loss,	f = 0.9 GHz f = 1.9 GHz f = 2.4 GHz	dB	4.5 7.5 8.0	7.5 10.5 11.0	- - -
RLout	Output Return Loss,	f = 0.9 GHz f = 1.9 GHz f = 2.4 GHz	dB	6.0 7.0 9.0	9.0 10.0 12.0	- - -
PO(1dB)	1 dB Gain Compression	Output Level, f = 0.9 GHz f = 1.9 GHz f = 2.4 GHz	dBm	+5.5 +4.5 +4.5	+8.0 +7.0 +7.0	_ _ _
Po(SAT)	Saturated Output Power	f = 0.9 GHz, Pin = -5 dBm f = 1.9 GHz, Pin = -5 dBm f = 2.4 GHz, Pin = -5 dBm	dBm	- - -	+9.5 +9.0 +9.0	- - -

ABSOLUTE MAXIMUM RATINGS¹

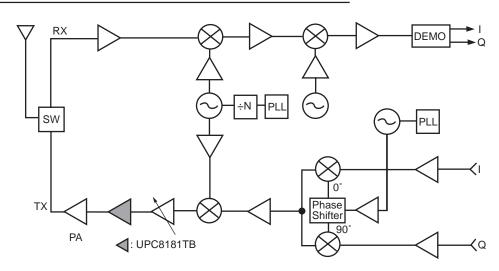
SYMBOLS	PARAMETERS	UNITS	RATINGS
Vcc	Supply Voltage ²	V	3.6
Icc	Total Cicuit Current	mA	60
Pb	Power Dissipation ³	mW	270
ТА	Operating Ambient Temperature	°C	-40 to +85
Тѕтс	Storage Temperature	°C	-55 to +150
Pin	Input Power ⁴	dBm	+10

Notes:

- 1. Operation in excess of any one of these conditions may result in permanent damage.
- 2. $T_A = 25^{\circ}C$, pins 4 and 6.
- 3. Mounted on a double-sided copper clad 50x50x1.6 mm epoxy glass PWB, TA = $+85^{\circ}$ C.
- 4. TA = +25 °C

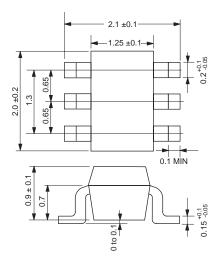
RECOMMENDED OPERATING CONDITIONS

SYMBOLS	PARAMETERS	UNITS	MIN	TYP	MAX
Vcc	Supply Voltage ¹	V	2.7	3.0	3.3

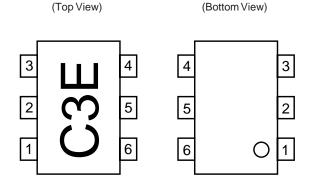

Note:

1. Same voltage applied to pins 4 and 6

PIN FUNCTIONS (Pin Voltage is measured at Vcc = 3.0 V)


Pin No.	Pin Name	Applied Voltage	Pin Voltage	Description	Equivalent Circuit
1	INPUT	_	0.99	Signal input pin. An internal matching circuit, configured with resistors, enables 50 Ω connection over a wide band. A multi-feedback circuit is designed to cancel the deviations of hFE and resistance. This pin must be coupled to signal source with capacitor for DC cut.	
2 3 5	GND	0	_	GND pin. This pin should be connected to the system ground with minimuim inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with wide ground pattern to decrease impedance difference.	1
4	OUTPUT	Voltage as same as Vcc through external inductor	_	Signal output pin. The inductor must be attached between Vcc and output pins to supply current to the internal output transistors.	3 2 5
6	Vcc	2.7 to 3.3	_	Power supply pin, which biases the internal input transistor. This pin should be externally equipped with bypass capacitor to minimize its impedance.	GND GND

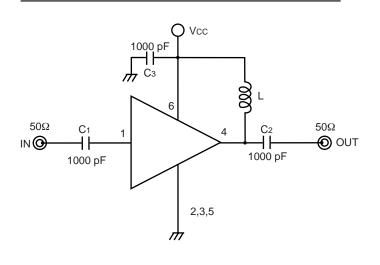
APPLICATION EXAMPLE (Digital Cellular Telephone



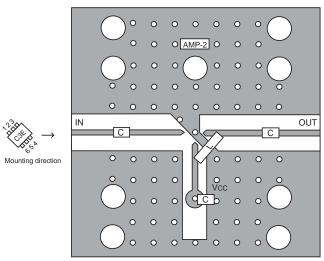
OUTLINE DIMENSIONS (Units in mm)

6-PIN SUPER MINIMOLD

LEAD CONNECTIONS


- 1. INPUT
- 2. GND
- 3. GND
- 4. OUTPUT
- 5. GND
- 6. Vcc

ORDERING INFORMATION


PART NUMBER	PACKAGE	QUANTITY
UPC8181TB-E3	6-pin super minimold	3kpcs/Reel

Note: Embossed tape 8 mm wide. Pins 1,2,3 face tape perforation side.

TEST CIRCUIT

APPLICATION BOARD

Note:

- 1. 30x30x0.4mm double sided copper clad polyimide board.
- 2. Back side: GND pattern.
- 3. Solder plated on patterns.
- 4. o O: Through holes.

EXCLUSIVE NORTH AMERICAN AGENT FOR **NEC** RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS