16-bit Proprietary Microcontroller

CMOS

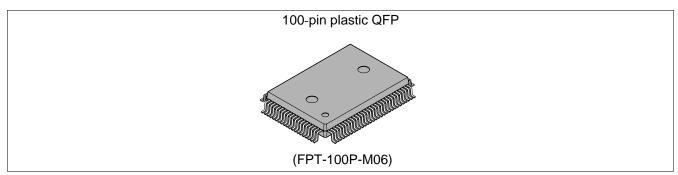
F²MC-16LX MB90800 Series

MB90802/802S/803/803S/F804/V800

DESCRIPTION

The MB90800 series is a general-purpose 16-bit microcontroller that has been developed for high-speed realtime processing required for industrial and office automation equipment and process control, etc. The LCD controller of 48 segment four common is built into.

Instruction set has taken over the same AT architecture as in the F²MC-8L and F²MC-16L, and is further enhanced to support high level languages, extend addressing mode, enhanced divide/multiply instructions with sign and enrichment of bit processing. In addition, long word processing is now available by introducing a 32-bit accumulator.


■ FEATURES

Clock

- Built-in PLL clock frequency multiplication circuit
- Operating clock (PLL clock) : divided-by-2 of oscillation (at oscillation of 6.25 MHz) or
 - 1 to 4 times the oscillation (at oscillation of 6.25 MHz to 25 MHz).
- Minimum instruction execution time of 40.0 ns (at oscillation of 6.25 MHz, four times the PLL clock, operation at Vcc = 3.3 V)
- The maximum memory space:16 MB
 - 24-bit internal addressing
 - Bank addressing

(Continued)

PACKAGE

(Continued)

Optimized instruction set for controller applications

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- High code efficiency
- Enhanced high-precision computing with 32-bit accumulator
- Enhanced Multiply/Divide instructions with sign and the RETI instruction

• Instruction system compatible with high-level language (C language) and multitask

- Employing system stack pointer
- · Instruction set has symmetry and barrel shift instructions

• Program Patch Function (2 address pointer)

• 4-byte instruction queue

• Interrupt function

- The priority level can be set to programmable.
- Interrupt function with 32 factors

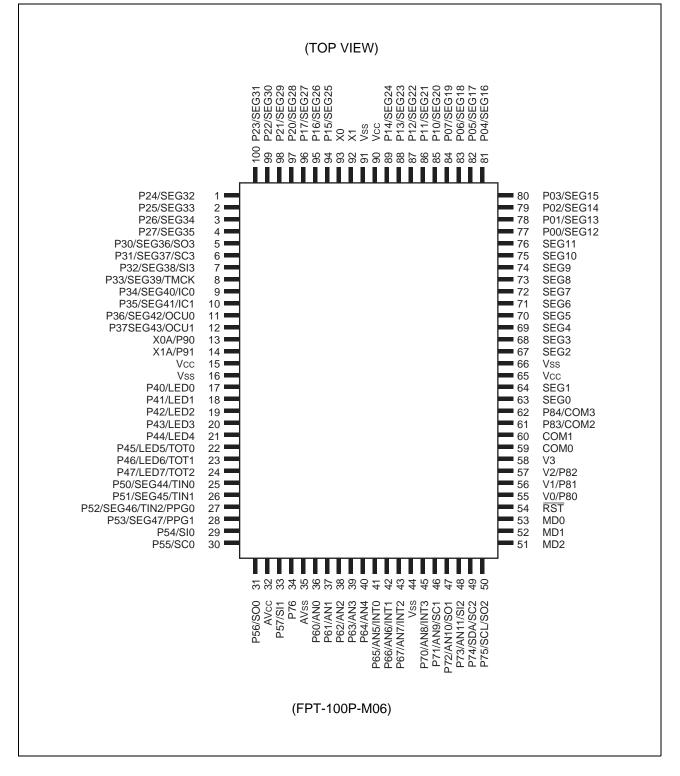
Data transfer function

• Expanded intelligent I/O service function (EI2OS): Maximum of 16 channels

• Low Power Consumption Mode

- Sleep mode (a mode that halts CPU operating clock)
- Time-base timer mode (a mode that operates oscillation clock and time-base timer)
- Watch mode (mode in which only the subclock and watch timers operate)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking mode (operating CPU at each set cycle)

Package


- QFP-100 (FPT-100P-M06:0.65 mm pin pitch)
- Process : CMOS technology

■ PRODUCT LINEUP

Pa	rt number	MB90V800	MB90F804-101/201	MB90802/S	MB90803/S		
Туре		Evaluation product	product products Mask ROM products				
System clo	ock	On-chip PLL clock multiplication method(\times 1, \times 2, \times 3, \times 4, 1/2 when PLL stops) Minimum instruction execution time of 40.0 ns (at oscillation of 6.25 MHz, four times the PLL clock)					
ROM capa	acity	No	256 KB	128	KB		
RAM capa	acity	28 KB	16 KB	2 KB	4 KB		
CPU funct	tions	Minimum instructio Addressing type Program Patch Fur The maximum mer	Program Patch Function : 2 address pointers				
Ports		not used)	3 ports (shared with resou				
LCD contr	oller/driver	Segment driver that common driver 48	it can drive the LCD pane SEG × 4 COM	I (liquid crystal disp	lay) directly, and		
16-bit	16-bit free-run timer	1 channel Overflow interrupt					
input/ output	Output compare (OCU)	2 channels Pin input factor: matching of the compare register					
timer	Input capture (ICU)	2 channels Rewriting a register value upon a pin input (rising edge, falling edge, or both edges)					
16-bit Relo	oad Timer	16-bit reload timer operation (toggle output, single shot output selectable) The event count function is optional. The event count function is optional. Three channels are built in.					
16-bit PPC	3 timer	Output pin \times 2 ports Operating clock frequency : fcp, fcp/22, fcp/24, fcp/26 Two channels are built in.					
Timebase	timer	1 channel					
Watchdog	timer	1 channel					
Timer cloc	ck output circuit	Clock with a frequency of external input clock divided by 16/32/64/128 can be output externally.					
I ² C bus		I ² C Interface. 1 channel is built-in.					
8/10-bit A/D converter		12 channels (input multiplex) The 8-bit resolution or 10-bit resolution can be set. Conversion time : 5.9 μ s (When machine clock 16.8 MHz works).					
UART		Full-duplex double buffer Asynchronous/synchronous transmit (with start/stop bits) are supported. Two channels are built in.					
Extended interface	I/O serial	Two channels are built in.					
Interrupt d	lelay interrupt		pendence (A/D input and L"→"H" edge/"H"→"L" ed		l selectable		
					(Continuer		

Part number	MB90V800	MB90F804-101/201	MB90803/S		
DTP/External interrupt8 channels (The 8 channels include with the shared A/D input) Interrupt causes : "L"→"H" edge/"H"→"L" edge/"L" level/"H" level selectar					
Low Power Consumption Mode	Sleep mode/Time-base timer mode/Watch mode/Stop mode/CPU intermittent mode				
Process	CMOS				
Operating voltage 2.7 V to 3.6 V					

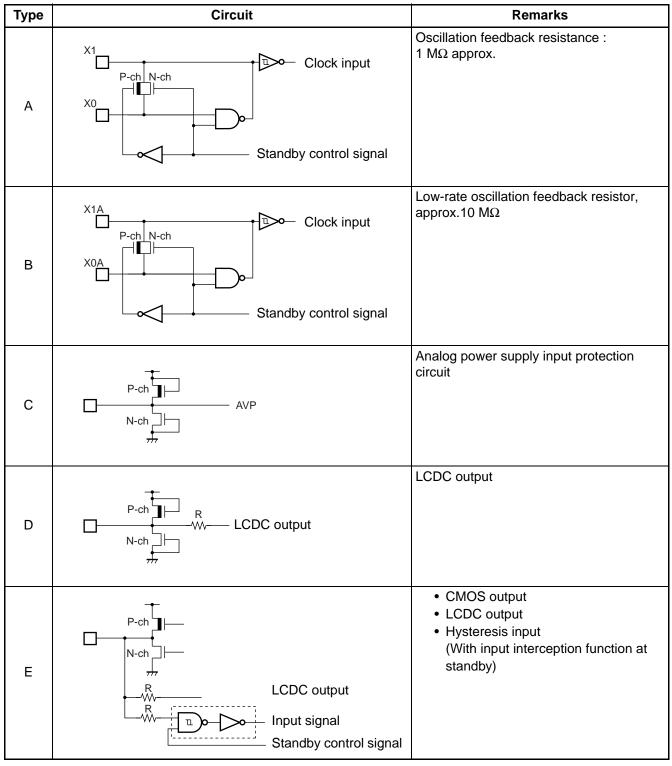
■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
92, 93	X0, X1	A	Oscillation status	It is a terminal which connects the oscillator. When connecting an external clock, leave the x1 pin unconnected.
13, 14	X0A, X1A	В	Oscillation status	It is 32 kHz oscillation pin. (Dual-line model)
13, 14	P90, P91	G	Port input (High-Z)	General purpose input/output port. (Single-line model)
51	MD2	М	Mode Pins	Input pin for selecting operation mode. Connect directly to Vss.
52, 53	MD1, MD0	L	Mode Pins	Input pin for selecting operation mode. Connect directly to Vcc.
54	RST	К	Reset input	External reset input pin.
63, 64, 67 to 76	SEG0 to SEG11	D	LCD SEG output	A segment output terminal of the LCD controller/ driver.
77 to 84	SEG12 to SEG19	E		A segment output terminal of the LCD controller/ driver.
	P00 to P07			General purpose input/output port.
85 to 89,	SEG20 to SEG27	Е		A segment output terminal of the LCD controller/ driver.
94 to 96	P10 to P17			General purpose input/output port.
97 to 100, 1 to 4	SEG28 to SEG35	E		A segment output terminal of the LCD controller/ driver.
1 10 4	P20 to P27			General purpose input/output port.
	SEG36		Port input (High-Z)	A segment output terminal of the LCD controller/ driver.
5	P30	Е		General purpose input/output port.
Ŭ	SO3			Serial data output pin of serial I/O ch.3. Valid when serial data output of serial I/O ch.3 is enabled.
	SEG37			A segment output terminal of the LCD controller/ driver.
6	P31	Е		General purpose input/output port.
Ŭ	SC3	_		Serial clock I/O pin of serial I/O ch.3. Valid when serial clock output of serial I/O ch.3 is enabled.

Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
	SEG38			A segment output terminal of the LCD controller/ driver.
7	P32	Е		General purpose input/output port.
	SI3	_		Serial data input pin of serial I/O ch.3. This pin may be used during serial I/O ch.3 in input mode, so it cannot use as other pin function.
	SEG39			A segment output terminal of the LCD controller/ driver.
8	P33	Е		General purpose input/output port.
	TMCK			Timer clock output pin. It is effective when permitting the power output.
	SEG40, SEG41	_		A segment output terminal of the LCD controller/ driver.
9, 10	P34, P35	E		General purpose input/output port.
	IC0, IC1			External trigger input pin of input capture ch.0/ch.1.
	SEG42, SEG43	E	Port input	A segment output terminal of the LCD controller/ driver.
11, 12	P36, P37			General purpose input/output port.
	OCU0, OCU1		(High-Z)	Output terminal for the Output Compares.
17 to 21	LED0 to LED4	F	F	It is a output terminal for LED ($I_{OL} = 15 \text{ mA}$).
	P40 to P44			General purpose input/output port.
	LED5 to LED7			It is a output terminal for LED ($I_{OL} = 15 \text{ mA}$).
	P45 to P47	_		General purpose input/output port.
22 to 24	TOT0 to TOT2	F		External event output pin of reload timer ch.0 to ch.2. It is effective when permitting the external event output.
	SEG44, SEG45			A segment output terminal of the LCD controller/ driver.
25, 26	P50, P51	Е		General purpose input/output port.
,	TINO, TIN1	-		External clock input pin of reload timer ch.0, ch.1. It is effective when permitting the external clock input.

Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
	SEG46			A segment output terminal of the LCD controller/ driver.
	P52			General purpose input/output port.
27	TIN2	E		External clock input pin of reload timer ch.2. It is effective when permitting the external clock input.
	PPG0			PPG timer (ch.0) output pin.
	SEG47	L L		A segment output terminal of the LCD controller/ driver.
28	P53	E		General purpose input/output port.
	PPG1			PPG (ch.1) timer output pin.
29	SIO	G		Serial data input pin of UART ch.0. This pin may be used during UART ch.0 in receiving mode, so it cannot use as other pin function.
	P54		Port input (High-Z)	General purpose input/output port.
30	SC0	G		Serial clock input/output pin of UART ch.0. It is effective when permitting the serial clock output of UART ch.0.
	P55			General purpose input/output port.
31	SO0	G		Serial data output pin of UART ch.0. It is effective when permitting the serial clock output of UART ch.0.
	P56			General purpose input/output port.
33	SI1	G		Serial data input pin of UART ch.1. This pin may be used during UART ch.1 in receiving mode, so it cannot use as other pin function.
	P57			General purpose input/output port.
34	P76	G		General purpose input/output port.
36 to 40	AN0 to AN4	Ι		Analog input pin ch.0 to ch.4 of A/D converter. Enabled when analog input setting is " enabled "(set by ADER).
	P60 to P64			General purpose input/output port.


Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
	AN5 to AN7	_		Analog input pin ch.5 to ch.7 of A/D converter. Enabled when analog input setting is " enabled ".
41 to 43	P65 to P67			General purpose input/output port.
	INT0 to INT2		Analog input (High-Z)	Functions as an external interrupt ch.0 to ch.2 input pin.
	AN8			Analog input pin ch.8 of A/D converter. Enabled when analog input setting is " enabled ".
45	P70			General purpose input/output port.
	INT3			Functions as an external interrupt ch.3 input pin.
	AN9			Analog input pin ch.9 of A/D converter. Enabled when analog input setting is " enabled ".
46	P71			General purpose input/output port.
	SC1			Serial clock input/output pin of UART ch.1. It is effective when permitting the serial clock output of UART ch.1.
	AN10			Analog input pin ch.10 of A/D converter. Enabled when analog input setting is " enabled ".
47	P72	1	Port input	General purpose input/output port.
	SO1		(High-Z)	Serial data output pin of serial I/O ch.1. Valid when serial data output of serial I/O ch.1 is enabled.
	AN11			Analog input pin ch.11 of A/D converter. Enabled when analog input setting is " enabled ".
48	P73			General purpose input/output port.
	SI2			Serial data input pin of serial I/O ch.2. This pin may be used during serial I/O ch.2 in input mode, so it cannot use as other pin function.

(Continued)

Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
	SDA			Data input/output pin of I ² C Interface. This pin is enabled when the I ² C interface is operated. While the I ² C interface is running, the port must be set for input use.
49	P74	Н		General purpose input/output port. (N-ch open-drain, withstand voltage of 5 V.)
	SC2		Port input	Serial clock input pin of serial I/O ch.2. Valid when serial clock output of serial I/O ch.2 is enabled.
	SCL	(High-Z)		Clock input/output pin of I ² C Interface. This pin is enabled when the I ² C interface is operated. While the I ² C interface is running, the port must be set for input use.
50	P75	Н		General purpose input/output port. (N-ch open-drain, withstand voltage of 5 V.)
	SO2			Serial data output pin of serial I/O ch.2. Valid when serial data output of serial I/O ch.2 is enabled.
55 to 57	V0 to V2	J	LCD drive power	LCD controller/driver. Reference power terminals of LCD controller/driver.
	P80 to P82		supply input	General purpose input/output port.
59, 60	COM0, COM1	D	LCD COM output	A common output terminal of the LCD controller/ driver.
	P83, P84		Port input	General purpose input/output port.
61, 62	COM2, COM3	E	(High-Z)	A common output terminal of the LCD controller/ driver.
32	AVcc	С		A/D converter exclusive power supply input pin.
35	AVss	С		A/D converter-exclusive GND power supply pin.
58	V3	J	Power supply	LCD controller/driver Reference power terminals of LCD controller/driver.
15, 65, 90	Vcc			These are power supply input pins.
16, 44, 66, 91	Vss			GND power supply pin.

* : Refer to "■ I/O CIRCUIT TYPE" for I/O circuit type.

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
F	P-ch N-ch R R L D C N-ch R Standby control signal	 CMOS output (Heavy-current lot =15 mA for LED drive) Hysteresis input (With input interception function at standby)
G	P-ch N-ch R R C C C C C C C C C C C C C C C C C	 CMOS output CMOS hysteresis input (With input interception function at standby) Notes : • The I/O port and internal resources share one output buffer for their outputs. The I/O port and internal resources share one input buffer for their input.
н	N-ch Nout R Input signal Standby control signal	 Hysteresis input (With input interception function at standby) N-ch open drain output
Ι	P-ch N-ch R R C R C R C R C C R C C R C C C R C	 CMOS output CMOS hysteresis input (With input interception function at standby) Analog input (If the bit of analog input enable register = 1, the analog input of A/D converter is enabled.) Notes : • The I/O port and internal resources share one output buffer for their outputs. The I/O port and internal resources share one input buffer for their input.

⁽Continued)

Туре	Circuit	Remarks
J	P-ch R R LCD drive power supply	 CMOS output CMOS hysteresis input (With input interception function at standby) LCD drive power supply input
к	Reset input	CMOS hysteresis input with pull-up resistor.
L	Reset input	CMOS hysteresis input
м	R R 777	CMOS hysteresis input with pull-down resistor

HANDLING DEVICES

1. Preventing Latch-up, Turning on Power Supply

Latch-up may occur on CMOS IC under the following conditions:

- If a voltage higher than Vcc or lower than Vss is applied to input and output pins,
- A voltage higher than the rated voltage is applied between Vcc pin and Vss pin.
- If the AVcc power supply is turned on before the Vcc voltage.

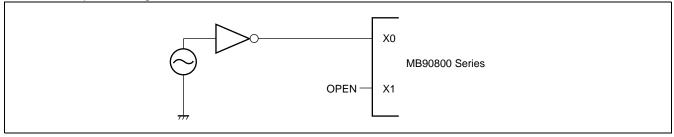
Ensure that you apply a voltage to the analog power supply at the same time as V_{cc} or after you turn on the digital power supply (when you perform power-off, turn off the analog power supply first or at the same time as V_{cc} and the digital power supply).

When latch-up occurs, power supply current increases rapidly and might thermally damage elements. When using CMOS IC, take great care to prevent the occurrence of latch-up.

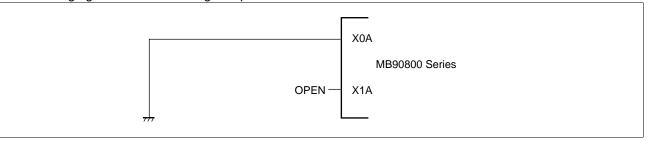
2. Treatment of unused pins

If unused input pins are left open, they may cause abnormal operation or latch-up which may lead to permanent damage to the semiconductor. Any such pins should be pulled up or pulled down through resistance of at least $2 \text{ k}\Omega$.

Any unused input/output pins should be left open in output status, or if found set to input status, they should be treated in the same way as input pins.


Any unused output pins should be left open.

3. Treatment of A/D converter power supply pins


Even if the A/D converter is not used, pins should be connected so that AVcc = Vcc, and AVss = Vss.

4. About the attention when the external clock is used

In using an external clock, drive pin X0 only and leave pin X1 open. The example of using an external clock is shown below.

Please set XOA = GND and X1A = open without subclock mode. The following figure shows the using sample.

5. Treatment of power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect all power supply pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1 μF as a bypass capacitor between V_{CC} and V_{SS} near this device.

6. About Crystal oscillators circuit

Noise near the X0/X1 pins and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1 pins and X0A/X1A pins, the crystal oscillator (or the ceramic oscillator) and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended to design the PC board artwork with the X0/X1 pins and X0A/X1A pins surrounded by ground plane because stable operation can be expected with such a layout.

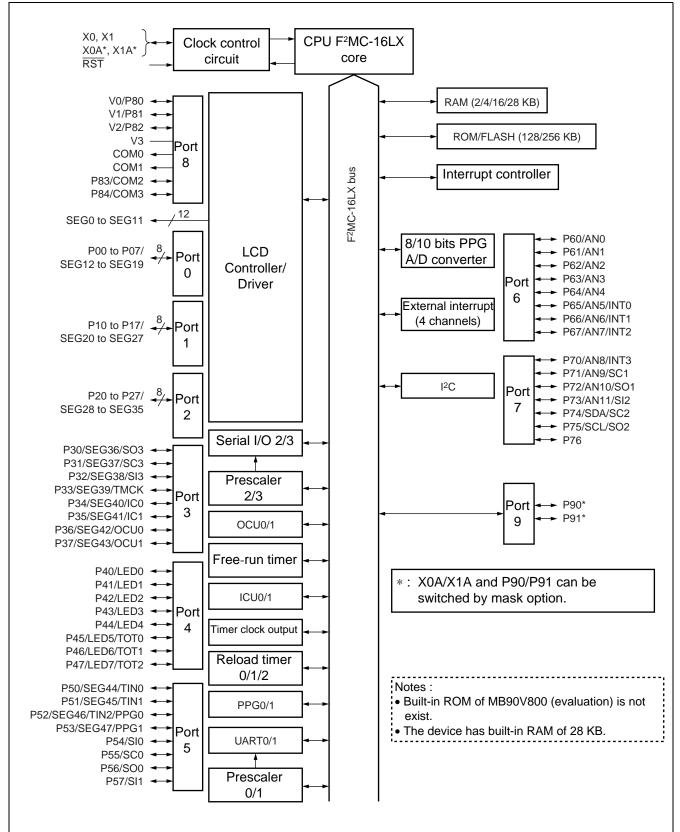
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

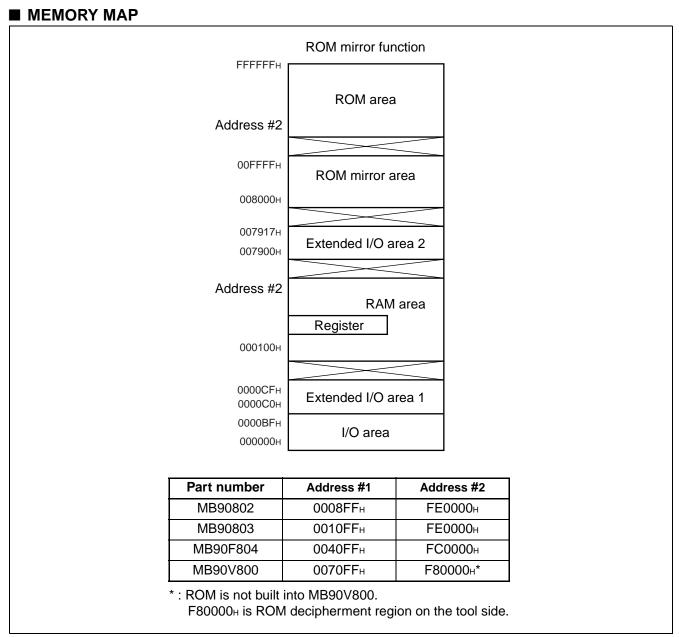
7. Caution on Operations during PLL Clock Mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operations if such failure occurs.

8. Stabilization of Supply Power Supply

A sudden change in the supply voltage may cause the device to malfunction even within the Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized. For reference, the supply voltage should be controlled so that Vcc ripple variations (peak- to-peak values) at commercial frequencies (50 MHz/60 MHz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.


9. Note on Using the two-subsystem product as one-subsystem product

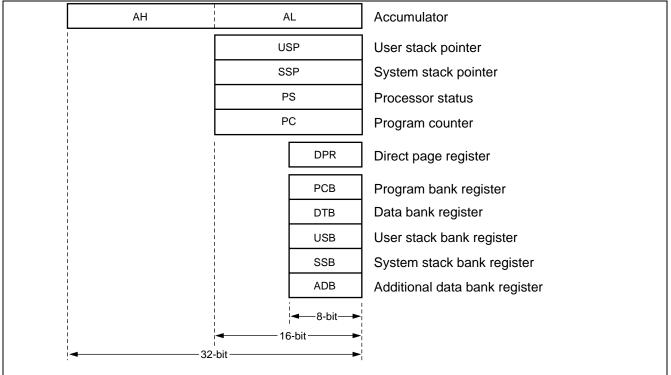

If you are using only one subsystem of the MB90800 series that come in one two-subsystem product, use it with XOA = Vss and X1A = OPEN.

10. Write to FLASH

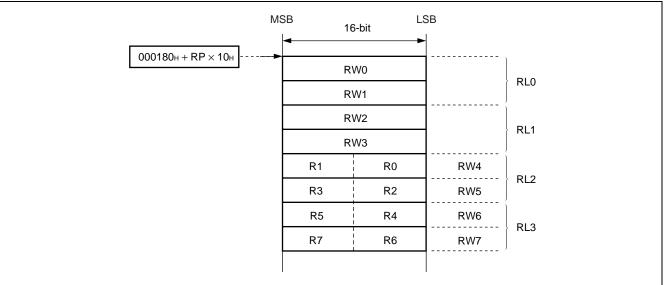
Ensure that you must write to FLASH at the operating voltage $V_{CC} = 3.0$ V to 3.6 V.

BLOCK DIAGRAM

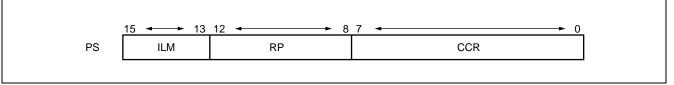
Memory Map of MB90800 Series


- Notes : When the ROM mirror function register has been set, the mirror image data at higher addresses ("FF4000H to FFFFFH") of bank FF is visible from the higher addresses ("008000H to 00FFFFH") of bank 00.
 - The ROM mirror function is for using the C compiler small model.
 - The lower 16-bit addresses of bank FF are equivalent to those of bank 00. Note that because the ROM area of bank FF exceeds

32 KB, all data in the ROM area cannot be shown in mirror image in bank 00.


• When the C compiler small model is used, the data table can be shown as mirror image at " 008000_H to 00FFFF_H " by storing the data table at " FF8000_H to FFFFFF_H. Therefore, data tables in the ROM area can be referenced without declaring the far addressing with the pointer.

■ F²MC-16L CPU Programming model


• Dedicated Registers

• General purpose registers

• Processor status

■ I/O MAP

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
00000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXXXB
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
00003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB
00006н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXXB
000007н	PDR7	Port 7 data register	R/W	Port 7	- XXXXXXXв
00008н	PDR8	Port 8 data register	R/W	Port 8	XXXXX _B
000009н	PDR9	Port 9 data register	R/W	Port 9	ХХв
00000Ан to 00000Fн		Prohib	ited		
000010н	DDR0	Port 0 direction register	R/W	Port 0	00000000
000011н	DDR1	Port 1 direction register	R/W	Port 1	000000000
000012н	DDR2	Port 2 direction register	R/W	Port 2	000000000
000013н	DDR3	Port 3 direction register	R/W	Port 3	000000000
000014н	DDR4	Port 4 direction register	R/W	Port 4	00000000
000015 н	DDR5	Port 5 direction register	R/W	Port 5	00000000
000016н	DDR6	Port 6 direction register	R/W	Port 6	00000000
000017н	DDR7	Port 7 direction register	R/W	Port 7	-0000000
000018н	DDR8	Port 8 direction register	R/W	Port 8	00000
000019н	DDR9	Port 9 direction register	R/W	Port 9	0 Ов
00001Ан to 00001Dн		Prohib	ited		
00001Eн	ADER0	Analog input enable 0	R/W	Port 6, A/D	11111111 _B
00001Fн	ADER1	Analog input enable 1	R/W	Port 7, A/D	1111в
000020н	SMR0	Serial mode register	R/W		00000-00в
000021н	SCR0	Serial control register	R/W		00000100в
000022н	S1DR0/ SODR0	Serial input/output register R/V		UART0	XXXXXXXXB
000023н	SSR0	Serial data register	R/W		0000100в
000024н		Prohib	ited	•	
000025н	CDCR0	Communication prescaler control register	R/W	Prescaler 0	000000в
000026н, 000027н		Prohib	ited		

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value		
000028н	SMR1	Serial mode register	R/W		00000-00в		
000029н	SCR1	Serial control register	R/W, W		00000100в		
00002Ан	SIDR1/ SODR1	Serial input/output register	R/W	UART1	XXXXXXXXB		
00002Вн	SSR1	Serial data register	R/W, R		00001000в		
00002Сн		Prohibit	ed				
00002Dн	CDCR1	Communication prescaler control register	R/W	Prescaler 1	000000в		
00002Ен		Prohibit	ed				
00002Fн			cu				
000030н	ENIR	Interrupt/DTP enable	R/W		0000		
000031н	EIRR	Interrupt/DTP source	R/W	External interrupt	XXXX _в		
000032н	ELVR	Request level set register	R/W		00000000		
000033н		Prohibit	ed				
000034н	ADCS0	Control status register (lower)	R/W		00в		
000035н	ADCS1	Control status register (upper)	W, R/W	A/D converter	00000000		
000036н	ADCR0	Data register (lower)	R	A/D converter	XXXXXXXXB		
000037н	ADCR1	Data register (upper)	R, W		00101-ХХв		
000038н		Prohibit	ed				
000039н	ADMR	A/D conversion channel set register	R/W	A/D converter	00000000		
00003Ан					XXXXXXXXB		
00003Вн	CPCLR	Compare clear register	R/W		XXXXXXXXB		
00003Сн	TODT	Time an accurate a data na sistem			00000000		
00003Dн	TCDT	Timer counter data register	R/W	16-bit free-run	00000000		
00003Ен	TCCSL	Timer counter control/status register (lower)	R/W	timer	00000000		
00003Fн	TCCSH	Timer counter control/status register (upper)	R/W	-	0 0 0 0 0 0в		
000040н to 000043н		Prohibit	ed				
000044н	IPCP0	Input capture data register 0			XXXXXXXXB		
000045н			R		XXXXXXXXB		
000046н	IPCP1	Input capture data register 1		Input Capture 0/1	XXXXXXXXB		
000047н	IF OF 1				XXXXXXXXB		
000048н	ICS01	Control status register	R/W		00000000		
000049н	Prohibited						
00004Ан	OCCP0	Compare register 0	R/W		00000000		
00004Вн	UCCFU	Compare register 0	FX/ V V	Output compare 0	00000000		
00004Сн		Compare register 1	D // /		00000000		
00004Dн	OCCP1	Compare register 1	R/W	Output compare 1	00000000B		

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value	
00004Ен	OCSL	Control register (lower)	R/W	Output Compare	000000в	
00004Fн	OCSH	Control register (upper)	R/W	0/1	00000в	
000050н	TMCSR0L	Timer control status register (lower)	R/W		00000000	
000051н	TMCSR0H	Timer control Status register (upper)	R/W	16-bit reload	0000в	
000052н	TMR0/	16-bit timer register/Reload register	R/W	timer 0	XXXXXXXXB	
000053н	TMRLR0	To-bit timer register/Reload register			XXXXXXXXB	
000054н	TMCSR1L	Timer control status register (lower)	R/W		00000000	
000055н	TMCSR1H	Timer control status register (upper)	R/W	16-bit reload	0000в	
000056н	TMR1/	16-bit timer register/Reload register	R/W	timer 1	XXXXXXXXB	
000057н	TMRLR1	To-bit limer register/Reload register			XXXXXXXXB	
000058н	TMCSR2L	Timer control status register (lower)	R/W		00000000	
000059н	TMCSR2H	Timer control status register (upper)	R/W	16-bit reload	0000в	
00005Ан	TMR2/	16-bit timer register/Reload register	R/W	timer 2	XXXXXXXXB	
00005Вн	TMRLR2	To-bit timer register/Reload register	1.7, 4.4		XXXXXXXXB	
00005Сн	LCRL	LCD control register (lower)	R/W		0001000в	
00005Dн	LCRH	LCD control register (upper)	R/W	LCD controller/ driver	00000000	
00005Ен	LCRR	LCD range register R/W		00000000		
00005Fн		Prohibit	ed			
000060н	SMCS0	Serial mode control status register	R, R/W	SIO	00000010 _B	
000061 н	000000	Senai mode control status register	R/W	(Extended Serial	0000в	
000062н	SDR0	Serial Data Register	R/W	I/O)	XXXXXXXXB	
000063н	SDCR0	Communication prescaler control register	R/W	Communication prescaler (SIO)	0 0 0 0 0в	
000064н	SMCS1	Serial mode control status register	R, R/W	SIO	0000010в	
000065н	31/1031		R/W	(Extended Serial	0000в	
000066н	SDR1	Serial Data Register	R/W	I/O)	XXXXXXXXB	
000067н	SDCR1	Communication prescaler control register	R/W	Communication prescaler (SIO)	0 0 0 0 0в	
000068н						
000069н	- Prohibited					
00006Ан	IBSR	I ² C status register	R		00000000	
00006Вн	IBCR	I ² C control register	R/W		00000000	
00006Сн	ICCR	I ² C clock selection register	R/W	l²C	XX0XXXXX _B	
00006Dн	IADR	I ² C address register	R/W		XXXXXXXXB	
00006Ен	IDAR	I ² C data register	R/W		XXXXXXXXB	
00006Fн	ROMM	ROM mirror function select register	R/W, W	ROM mirror	XXXXXXX1B	

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000070н	PDCRL0	PDCRL0/PDCRH0 PPG down counter	R		1 1 1 1 1 1 1 1 _B
000071н	PDCRH0	register	n.		11111111 _B
000072н	PCSRL0	PCSRL0/PCSRH0 PPG cycle set		XXXXXXXXB	
000073н	PCSRH0	register	W	16-bit	XXXXXXXXB
000074н	PDUTL0	PDUTL0/PDUTH0 PPG duty setting	XXXXXXXXB		
000075н	PDUTH0	register	W		XXXXXXXXB
000076н	PCNTL0	PCNTL0/PCNTH0 PPG control status	R/W		000000в
000077н	PCNTH0	register	r./vv		000000-в
000078н	PDCRL1	PDCRL1/PDCRH1 PPG down counter	D		11111111
000079н	PDCRH1	register	R		11111111 _в
00007Ан	PCSRL1	PCSRL1/PCSRH1 PPG cycle set	14/		XXXXXXXXB
00007Вн	PCSRH1	register	W	16-bit	XXXXXXXXB
00007Сн	PDUTL1	PDUTL1/PDUTH1 PPG duty setting	147	PPG1	XXXXXXXXB
00007Dн	PDUTH1	register	W		XXXXXXXXB
00007Ен	PCNTL1	PCNTL1/PCNTH1 PPG control status	DAA		000000в
00007F н	PCNTH1	register	R/W		000000-в
000080н				I	
to		(Reserve	d)		
000095н					
000096н		Prohibite			
000097н		(Reserve	d)		
000098н to 00009Dн		Prohibite	ed		
00009E н	PACSR	ROM correction control register	R/W	ROM Correction	00000000
00009Fн	DIRR	Delayed interrupt source generated/ release register	R/W	Delayed interrupt	Ов
0000А0н	LPMCR	Low power consumption mode control register	R/W, W	Low power consumption	00011000в
0000А1н	CKSCR	Clock selector register	R/W, R	control circuit	1 1 1 1 1 1 0 OB
0000А2н to 0000А7н		Prohibite	ed		
0000А8н	WDTC	Watchdog timer control	R, W	Watchdog timer	XXXXX 1 1 1в
0000А9н	TBTC	Time-base timer control register	R/W, W	Time-base timer	1 0 0 1 0 0в
0000ААн	WTC	Watch timer control register	Watch timer (Sub clock)	1 X0 1 1 0 0 0 _B	
0000ABн to 0000ADн		Prohibite	ed		

(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000AEн	FMCS	Flash control register	R/W	Flash I/F	000Х000в
0000AFн	TMCS	Timer clock output control register	R/W	Timer clock divide	XXXXX 0 0 0 _B
0000B0н	ICR00	Interrupt control register 00	R/W, W, R		00000111в
0000B1 н	ICR01	Interrupt control register 01	R/W, W, R		00000111в
0000B2н	ICR02	Interrupt control register 02	R/W, W, R		00000111в
0000ВЗн	ICR03	Interrupt control register 03	R/W, W, R		00000111в
0000B4н	ICR04	Interrupt control register 04	R/W, W, R		00000111в
0000B5н	ICR05	Interrupt control register 05	R/W, W, R		00000111в
0000В6н	ICR06	Interrupt control register 06	R/W, W, R		00000111в
0000 B7 н	ICR07	Interrupt control register 07	R/W, W, R	Interrupt	00000111в
0000 В 8н	ICR08	Interrupt control register 08	R/W, W, R	controller	00000111в
0000В9н	ICR09	Interrupt control register 09	R/W, W, R		00000111в
0000ВАн	ICR10	Interrupt control register 10	R/W, W, R		00000111в
0000ВВн	ICR11	Interrupt control register 11	R/W, W, R		00000111в
0000BCн	ICR12	Interrupt control register 12	R/W, W, R		00000111в
0000BDн	ICR13	Interrupt control register 13	R/W, W, R		00000111в
0000ВЕн	ICR14	Interrupt control register 14	R/W, W, R		00000111в
0000BFн	ICR15	Interrupt control register 15	R/W, W, R		00000111в
001FF0н					XXXXXXXXB
001FF1н	PADR0	Program address detection register 0	R/W	Address	XXXXXXXXB
001FF2н				matching	XXXXXXXXB
001FF3н				detection	XXXXXXXXB
001FF4н	PADR1	Program address detection register 1	R/W	function	XXXXXXXXB
001FF5н					XXXXXXXXB
007900н to 007917н	VRAM	LCD display RAM	R/W	LCD controller/ driver	XXXXXXXXB

• Read/Write

R/W : Readable and Writable

- R : Read only
- W : Write only
- Initial values
 - 0 : Initial Value is "0".
 - 1 : Initial Value is "1".
 - X : Initial Value is Indeterminate.
 - : Unused bit

■ INTERRUPT SOURCES, INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTERS

	El ² OS	Int	errupt	vector	Interrupt of	Drierit	
Interrupt source	readiness	Number*		Address	ICR	Address	Priori
Reset	×	#08	08н	FFFFDC H	—		High
INT 9 instruction	×	#09	09н	FFFFD8н	—		
Exceptional treatment	×	#10	0Ан	FFFFD4н			1
DTP/External interrupt ch.0	0	#11	0Вн	FFFFD0н	ICR00	0000В0н	
DTP/External interrupt ch.1	0	#13	0Dн	FFFFC8H	ICR01	0000B1н	
Serial I/O ch.2	×	#15	0Fн	FFFFC0н	ICR02	0000B2н	
DTP/External interrupt ch.2/ch.3	0	#16	10н	FFFFBC H	ICRUZ	0000 0 2H	
Serial I/O ch.3	×	#17	11 н	FFFFB8H	ICR03	0000B3н	
16-bit free-run timer	0	#18	12н	FFFFB4н		UUUUDJH	
Watch timer	×	#19	13н	FFFFB0H	ICR04	0000B4н	
16-bit Reload Timer ch.2	0	#21	15 н	FFFFA8н	ICR05	0000B5н	
16-bit Reload Timer ch.0	\bigtriangleup	#23	17 н	FFFFA0H	ICR06	0000 В6 н	
16-bit Reload Timer ch.1	\bigtriangleup	#24	18 н	FFFF9CH	ICRUO	UUUUBOH	
Input capture ch.0	\bigtriangleup	#25	19 н	FFFF98H	ICR07	0000 B7 н	
Input capture ch.1	\triangle	#26	1Ан	FFFF94н		0000078	
PPG timer ch.0 counter-borrow	0	#27	1Bн	FFFF90H	ICR08	0000B8н	
Output compare match	0	#29	1Dн	FFFF88H	ICR09	0000В9н	
PPG timer ch.1 counter-borrow	0	#31	1Fн	FFFF80H	ICR10	0000BAн	
Time-base timer	×	#33	21н	FFFF78н	ICR11	0000ВВн	
UART0 reception end	Ø	#35	23н	FFFF70н		000080	
UART0 transmission end	\bigtriangleup	#36	24н	FFFF6CH	ICR12	0000BCн	
A/D converter conversion termination	0	#37	25н	FFFF68H		000000	1
I ² C Interface	×	#38	26н	FFFF64H	ICR13	0000BDн	
UART1 : Reception	Ø	#39	27н	FFFF60H		0000BEн	1
UART1 : Transmission	\bigtriangleup	#40	28н	FFFF5CH	ICR14	UUUUBEH	
Flash memory status	×	#41	29н	FFFF58H			♥
Delayed interrupt output module	×	#42	2Ан	FFFF54н	ICR15	0000BFн	Low

 \bigcirc : Available

 \times : Unavailable

 \odot : Available El²OS function is provided.

 \triangle : Available when a cause of interrupt sharing a same ICR is not used.

- *: When interrupts of the same level are output at the same time, the interrupt with the smallest interrupt vector number has the priority.
 - For a resource that has two interrupt causes in the same interrupt control register (ICR), use of El²OS is enabled, El²OS is started upon detection of one of the interrupt causes. As interrupts other than the start cause are masked during El²OS start, masking one of the interrupt causes is recommended when using El²OS.
 - For a resource that has two interrupt causes in the same interrupt control register (ICR), the interrupt flag is cleared by an EI²OS interrupt clear signal.

PERIPHERAL RESOURCES

1. I/O port

The I/O ports function to output data from the CPU to I/O pins by setting their port data register (PDR) and send signals input to I/O pins to the CPU. In addition, the port can randomly set the direction of the input/output of the port in bit by the port direction register (DDR).

The MB90800 series has 68 (70 ports when the subclock is not used) input/output pins. Port0 to port8 (port0 to port9 when product without the subclock is used) are input/output port.

PDR0	7	6	5	4	3	2	1	0	Initial Value	Access
Address : 000000H	P07	P06	P05	P04	P03	P02	P01	P00	Indeterminate	R/W*
PDR1	15	14	13	12	11	10	9	8		
Address : 000001H	P17	P16	P15	P14	P13	P12	P11	P10	Indeterminate	R/W*
PDR2	7	6	5	4	3	2	1	0		
Address : 000002H	P27	P26	P25	P24	P23	P22	P21	P20	Indeterminate	R/W*
PDR3	15	14	13	12	11	10	9	8		
Address : 000003н	P37	P36	P35	P34	P33	P32	P31	P30	Indeterminate	R/W*
PDR4	7	6	5	4	3	2	1	0		
Address : 000004н	7 P47	P46	9 P45	4 P44	943	2 P42	1 P41	P40	Indeterminate	R/W*
PDR5										
Address : 000005н	15 P57	14 P56	13 P55	12 P54	11 P53	10 P52	9 P51	8 P50	Indeterminate	R/W*
PDR6	107		1 00	-	1 00	-	101	1.00		
	7	6	5	4	3	2	1	0		
Address : 000006н	P67	P66	P65	P64	P63	P62	P61	P60	Indeterminate	R/W*
PDR7	15	14	13	12	11	10	9	8		
Address : 000007н	_	P76	P75	P74	P73	P72	P71	P70	Indeterminate	R/W*
PDR8	7	6	5	4	3	2	1	0		
Address : 000008н	_	_	_	P84	P83	P82	P81	P80	Indeterminate	R/W*
PDR9	15	14	13	12	11	10	9	8		
Address : 000009н							9 P91	o P90	Indeterminate	R/W*
- : Unused										

(1) Port data register

* : R/W access to I/O ports is a bit different in behavior from R/W access to memory as follows

• Input mode

When reading : Read the corresponding pin level.

When writing : Write into the latch for the output.

Output mode

When reading : Read the value of the data register latch.

When writing : Write into the corresponding pin.

(2) Port direction register

DDR0 Address : 000010⊦	7 D07	6 D06	5 D05	4 D04	3 D03	2 D02	1 D01	0 D 00	Initial Value 0000000₀	Access R/W
DDR1	15	14	13	12	11	10	9	8	0000000	
Address : 000011н	D17	D16	D15	D14	D13	D12	D11	D10	0000000в	R/W
DDR2	7	6	5	4	3	2	1	0		
Address : 000012H	D27	D26	D25	D24	D23	D22	D21	D20	0000000в	R/W
DDR3	15	14	13	12	11	10	9	8		
Address : 000013н	D37	D36	D35	D34	D33	D32	D31	D30	0000000в	R/W
DDR4	7	6	5	4	3	2	1	0		
Address : 000014 _H	D47	D46	D45	D44	D43	D42	D41	D40	0000000в	R/W
DDR5	15	14	13	12	11	10	9	8		
Address : 000015н	D57	D56	D55	D54	D53	D52	D51	D50	0000000в	R/W
DDR6	7	6	5	4	3	2	1	0		
Address : 000016н	D67	D66	D65	D64	D63	_ D62	D61	D60	0000000в	R/W
DDR7	15	14	13	12	11	10	9	8		
Address : 000017н	_	D76	D75	D74	D73	D72	D71	D70	- 000000в	R/W
DDR8	7	6	5	4	3	2	1	0		
Address : 000018 _H	_		—	D84	D83	D82	D81	D80	00000в	R/W
DDR9	15	14	13	12	11	10	9	8		
Address : 000019н	_						D91	D90	00в	R/W
- : Unused										

When each terminal functions as a port, each correspondent pin are controlled by the port direction register to following;

0 : Input mode

1 : Output mode This bit becomes "0" after a reset.

Note : When accessing this register by using the instruction of the read modify write system (instructions such as bit set) is mode, the bit targeted by an instruction becomes the defined value. However, the content of the output register set to input with the other changes to input value of the pin at that time. Therefore, be sure to write an expected value into PDR firstly, and then set DDR and finally change to the output when changing the input pin to the output pin is made.

ADER0 Initial Value Access 6 5 2 0 7 4 3 1 Address : 00001EH 11111111в R/W ADE7 ADE6 ADE5 ADE4 ADE3 ADE2 ADE1 ADE0 ADER1 9 15 14 13 12 11 10 8 Address : 00001FH - - - -1111в R/W ___ ____ _ ___ ADE11 ADE10 ADE9 ADE8 - : Unused

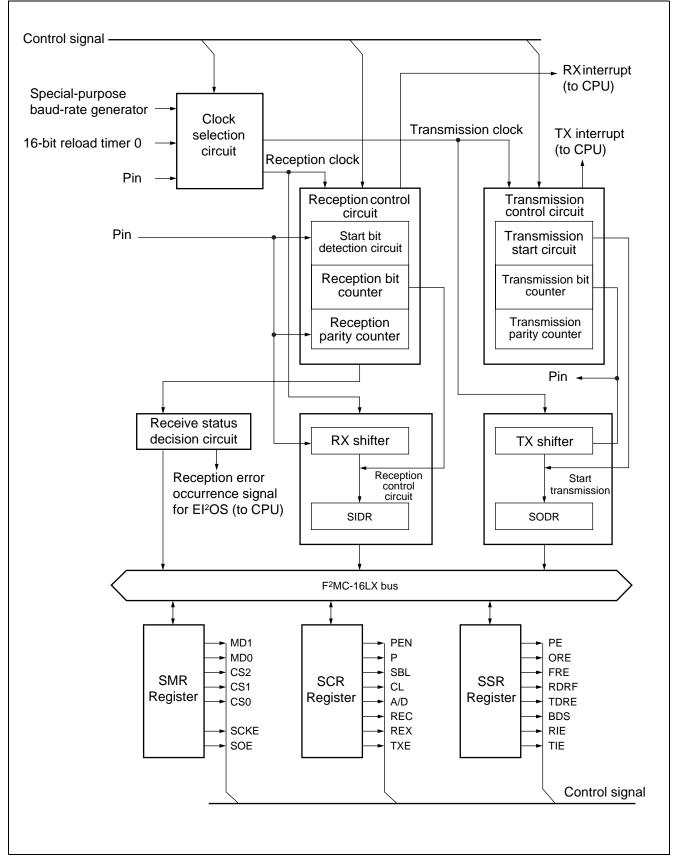
(3) Analog Input Enable register

Each pin of port 6 is controlled by the analog input enable register as follow.

- 0 : Port input/output mode.
- 1 : Analog input mode. This bit becomes "1" after a reset.

2. UART

UART is a serial I/O port for asynchronous (start-stop synchronization) communication or CLK synchronous communications.


- With full-duplex double buffer
- Clock asynchronous (start-stop synchronization), CLK synchronous communications (no start-bit/stop-bit) can be used.
- Supports multi-processor mode
- Built-in dedicated baud rate generator

Asynchronous : 120192/60096/30048/15024/781.25 K/390.625 Kbps

- CLK synchronous : 25 M/12.5 M/6.25 M/3.125 M/1.5627 M/781.25 Kbps
- Variable baud rate can be set by an external clock.
- 7-bits data length (only asynchronous normal mode) /8-bits length
- Master/slave type communication function (at multiprocessor mode) : The communication between one (master) to n (slave) can be operating.
- Error detection functions(parity, framing, overrun)
- Transmission signal format is NRZ

(1) Register list 15 8 7 0 CDCR ____ SCR SMR SSR SIDR (R)/SODR (W) 8-bit 8-bit Serial mode register (SMR0, SMR1) Initial Value 0 7 6 5 3 2 1 4 Address : 000020H 000028H MD1 MD0 CS2 CS1 CS0 SCKE SOE 00000 - 00в _ Read/Write R/W R/W R/W R/W R/W R/W R/W ____ Serial control register(SCR0, SCR1) Initial Value 15 14 13 12 11 10 9 8 Address : 000021H 000029H 0000100в PEN Ρ CL REC RXE SBL A/D TXE Read/Write R/W R/W R/W R/W W R/W R/W R/W Serial input/output register (SIDR0, SIDR1/SODR0, SODR1) **Initial Value** 7 6 5 4 3 2 1 0 $Address: \begin{array}{c} 000022 \mbox{\tiny H} \\ 00002 \mbox{\tiny AH} \end{array}$ XXXXXXXX_B D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W Read/Write R/W R/W R/W Serial Data Register (SSR0, SSR1) Initial Value 15 14 13 12 11 10 9 8 $Address: \begin{array}{c} 000023 \\ 00002 \\ B \\ H \end{array}$ 00001000в ΡE ORE FRE RDRF TDRE BDS RIE TIE R R R R R R/W R/W R/W Read/Write Communication prescaler control register (CDCR0, CDCR1) Initial Value 10 9 8 15 14 13 12 11 Address : 000025H 00002DH 00 - - 0000в MD URST Reserved DIV2 DIV1 DIV0 ____ ____ Read/Write R/W R/W R/W R/W R/W R/W ____ ____ - : Unused

(2) Block Diagram

3. I²C Interface

I²C interface is the serial input/output port that support Inter IC BUS and functions as the master/slave device on the I²C bus. MB90800 series have 1 channel of the built-in I²C interface.


It has the features of I²C interface below.

- Master/slave sending and receiving
- Arbitration function
- Clock synchronization function
- Slave address and general call address detection function
- Detecting transmitting direction function
- · Repeat generating and detecting function of the start conditions
- Bus error detection function
- The forwarding rate can be supported to 100 Kbps.

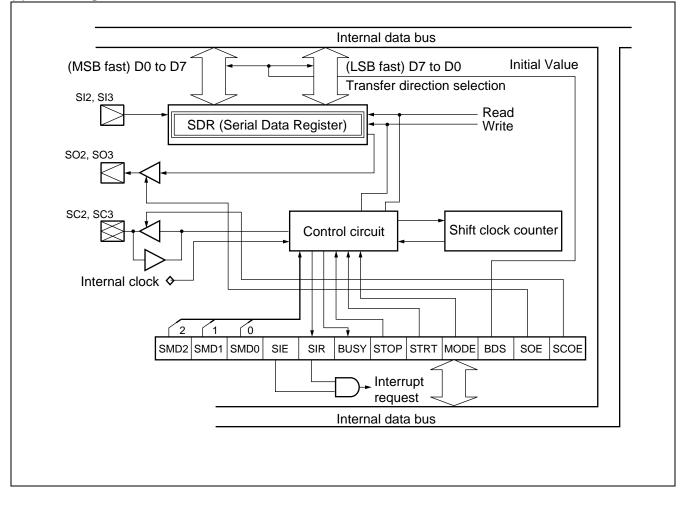
C status register (IBSR)	7	6	5	4	3	2	1	0	Initial Value
Address :00006Aн	BB	RSC	AL	LRB	TRX	AAS	GCA	FBT	0000000в
	R	R	R	R	R	R	R	R	Read/Write
C control register (IBCR)									
Address :00006B⊦ r	15	14	13	12	11	10	9	8	Initial Value
Address .00000DH	BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
C clock control register (IC	CCR)								
Address :00006CH	7	6	5	4	3	2	1	0	Initial Value
		_	EN	CS4	CS3	CS2	CS1	CS0	XX0XXXXX _B
I.			R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
C data register(IDAR)									
Address :00006E⊦	15	14	13	12	11	10	9	8	Initial Value
Address .00006EH	D7	D6	D5	D4	D3	D2	D1	D0	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
C address register (IADR)									
Address :00006D _H	7	6	5	4	3	2	1	0	Initial Value 1 XXXXXXXB
AULIESS .00000DH	_	A6	A5	A4	A3	A2	A1	A0	
	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write

(1) Register list

(2) Block Diagram

4. Extended I/O serial interface

The extended I/O serial interface is a serial I/O interface that can transfer data through the adoption of 8-bit \times 2 channels configured clock synchronization scheme. The extended I/O serial interface also has two alternatives in data transfer called LSB first and MSB first.


The serial I/O interface operates in two modes:

- Internal shift clock mode : Transfer data in sync with the internal clock.
- External shift clock mode : Transfers data in sync with the clock input through an external pin (SCK) . In this mode, transfer operation performed by the CPU instruction is also available by operating the general-use port sharing an external pin (SCK) .

(1) Register list

Serial mode control status register(SMCS0, SMCS1)											
000000	15	14	13	12	11	10	9	8	Initial Value		
Address :000060⊦ 000064⊦	SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT	0000010в		
	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	Read/Write		
000004	7	6	5	4	3	2	1	0	_		
Address : <mark>000061</mark> н 000065н	_	_	_		MODE	BDS	SOE	SCOE	0000в		
	_	_	_	_	R/W	R/W	R/W	R/W	Read/Write		
Serial Data Register (SDR0, SDR1)											
000063	7	6	5	4	3	2	1	0			
Address : <mark>000062</mark> н 000066н	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write		
Communication Prescaler c	ontrol re	gister (S	SDCR0,	SDCR	1)						
000000	15	14	13	12	11	10	9	8			
Address : <mark>000063</mark> н 000067н	MD	—	—		Reserved	DIV2	DIV1	DIV0	00000в		
	R/W		_		R/W	R/W	R/W	R/W	Read/Write		
- : Unused											

(2) Block Diagram

5. 8/10-bit A/D converter

The feature of 8/10-bit A/D converter is shown as follows.

- conversion time : 3.1 μs minimum per 1 channel

(78 machine cycle/at machine clock 25 MHz/including the sampling time)

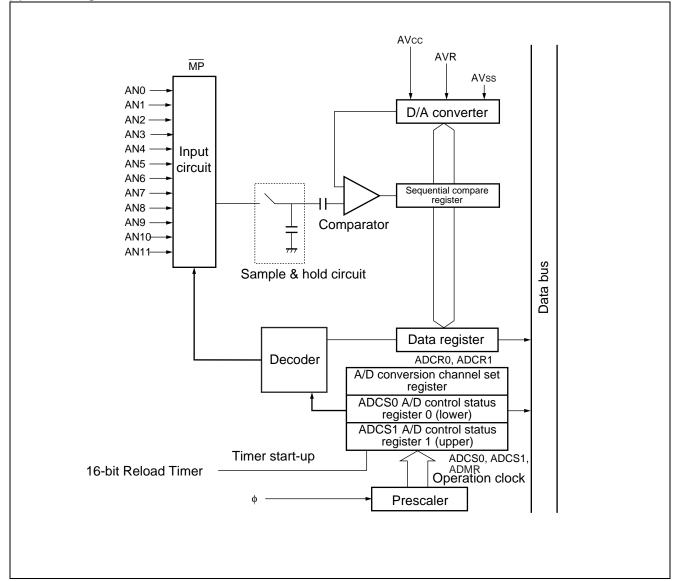
- Sampling time : 2.0 μs minimum per 1 channel

(50 machine cycle/at machine clock 25 MHz)

- · Uses RC-type successive approximation conversion method with a sample & hold circuit
- 8-bit resolution or 10-bit resolution can be select.

 12 channel program-selecta 	able analog inputs.
Single conversion mode	: Convert specified 1 channel

Scan conversion mode	: Continuous plural channels (maximum 12 channels can be programmed) are
	converted.
Continuous conversion mode	: Selected channel converted continuously.


Stop conversion time : Perform conversion for one channel, then pause it to wait for the next activation trigger (synchronizes the conversion start timing)

- El²OS can be activated by outputting the interrupt request when the A/D conversion completes.
- If the A/D conversion is performed under the condition of the interrupt enable, the converting data will be protected.
- Selectable conversion activation trigger : Software, or reload timer (rising edge)

(1) Register list

ADCS1, ADC	CS0 (Contro	l status	register)						
ADCS0		7	6	5	4	3	2	1	0	Initial Value
Address	: 000034н	MD1	MD0	_	_	_	_	_	_	00 в
		R/W	R/W		_		_			Read/Write
ADCS1	bit	15	14	13	12	11	10	9	8	Initial Value
Address	: 000035н	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	Reserved	0000000в
		R/W	R/W	R/W	R/W	R/W	R/W	W	R/W	Read/Write
ADCR1, ADO	CR0 (data re	egister)								
ADCR0	bit	7	6	5	4	3	2	1	0	Initial Value
Address	: 000036н	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
		R	R	R	R	R	R	R	R	Read/Write
ADCR1	bit	15	14	13	12	11	10	9	8	Initial Value
Address	: 000037н	S10	ST1	ST0	CT1	CT0		D9	D8	00101 - XXв
		W	W	W	W	W	_	R	R	Read/Write
- : Unused										

(2) Block Diagram

6. 16 bits PPG

The PPG timer consists of the following:

- Prescaler
- 16-bit down-counter: 1
- 16-bit data register with a cycle setting buffer
- 16-bit compare register with a duty setting buffer
- Pin control unit

The PPG timer can output pulses synchronized to the software trigger.

The output pulse can be changed to any cycle and duty freely by updating the PCSRL, PCSRH/PDUTL, PDUTH registers.

• PWM function

The PPG timer can output pulses programmably by updating the PCSR and PDVT registers described above in synchronization to the trigger.

Can also be used as a D/A converter by an external circuit.

· Single shot function

By detecting an edge of the trigger input, a single pulse can be output.

• 16-bit down counter

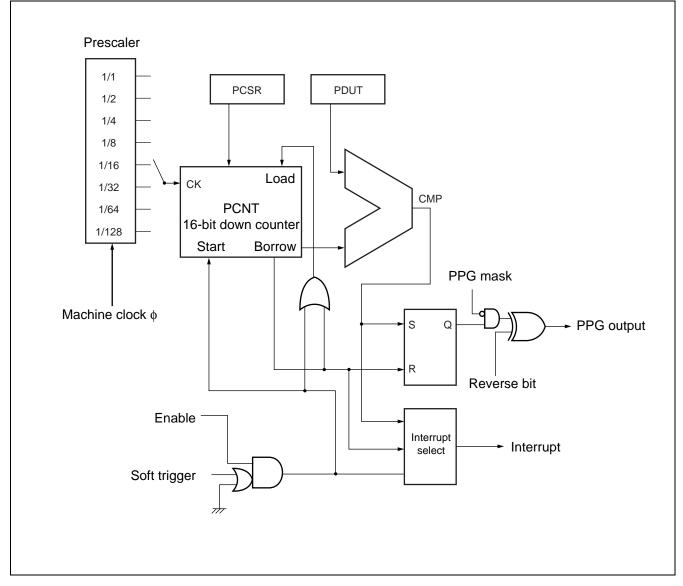
The counter operation clock comes from eight kinds optional. There are eight kinds of internal clocks.

 $(\phi, \phi 2, \phi 4, \phi 8, \phi 16, \phi 32, \phi 64, \phi 128) \phi$: machine clock

The counter can be initialized to "FFFF_H " at a reset or counter borrow.

• Interrupt request

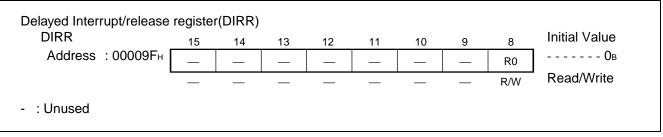
The PPG timer generates an interrupt request when :

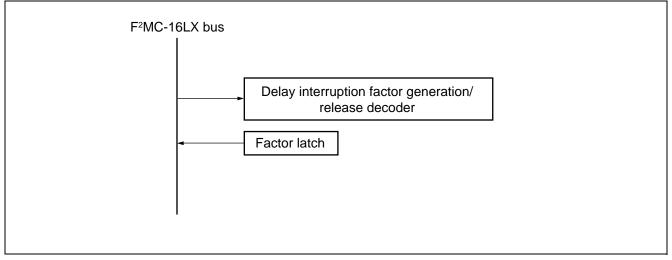

- Timer start-up
- Counter borrow occurrence (cycle match)
- Duty match occurrence

(1) Register list

PCNTH (PC	NTH0/PC	NTH1 C	Control S	Status re	egister)				
000077н	15	14	13	12	11	10	9	8	Initial Value
00007Fн	CNTE	STGR	MDSE	RTRG	CSK2	CSK1	CSK0	PGMS	000000Хв
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
PCNTL (PCN	ITL0/PCI	NTL1 C	ontrol St	tatus reg	gister)				
000076н	7	6	5	4	3	2	1	0	Initial Value
00007E н		—	IREN	IRQF	IRS1	IRS0	POEN	OSEL	000000в
	_	—	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
PDCRH (PD	CRH0/PE	OCRH1	PPG Do	own Cou	inter Re	gister)			
000071 н	15	14	13	12	11	10	9	8	Initial Value
000079н	DC15	DC14	DC13	DC12	DC11	DC10	DC09	DC08	1111111в
	R	R	R	R	R	R	R	R	Read/Write
PDCRL (PDC	CRL0/PD	CRL1 P	PG Dov	vn Cour	nter Reg	ister)			
000070н	7	6	5	4	3	2	1	0	Initial Value
000078н	DC07	DC06	DC05	DC04	DC03	DC02	DC01	DC00	1111111в
	R	R	R	R	R	R	R	R	Read/Write
PCSRH (PCS	SRH0/PC	SRH1 I	PPG cyc	cle set r	egister)				
000073н	15	14	13	12	11	10	9	8	Initial Value
00007Вн	CS15	CS14	CS13	CS12	CS11	CS10	CS09	CS08	XXXXXXXXB
	W	W	W	W	W	W	W	W	Read/Write
PCSRL (PCS	SRL0/PC	SRL1 P	PG cycl	e set re	gister)				
000072н	7	6	5	4	3	2	1	0	Initial Value
00007Ан	CS07	CS06	CS05	CS04	CS03	CS02	CS01	CS00	XXXXXXXXB
	W	W	W	W	W	W	W	W	Read/Write
PDUTH (PDI	JTH0/PD	UTH1 F	PG dut	y set re	gister)				
000075н	15	14	13	12	11	10	9	8	Initial Value
00007Dн	DU15	DU14	DU13	DU12	DU11	DU10	DU09	DU08	XXXXXXXXB
	W	W	W	W	W	W	W	W	Read/Write
PDUTL (PDL	JTL0/PDI	JTL1 PI	PG duty	set reg	ister)				
000074н	7	6	5	4	3	2	1	0	Initial Value
00007Сн	DU07	DU06	DU05	DU04	DU03	DU02	DU01	DU00	XXXXXXXXB
	W	W	W	W	W	W	W	W	Read/Write
- : Unused									

(2) Block Diagram

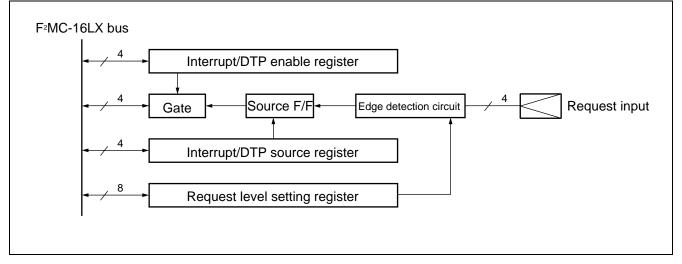

• 16-bit PPG ch.0/ch.1 block diagram



7. Delay interrupt generator module

The delayed interrupt generation module outputs an interrupt request for task switching. The hardware interrupt request can be generated by software.

(1) Register list

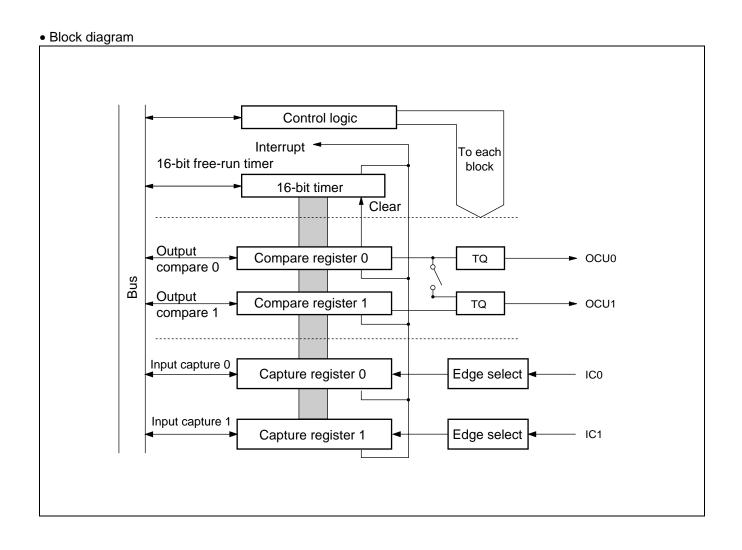


8. DTP/External interrupt

DTP (Data Transfer Peripheral)/External interrupt circuit detects the interrupt request input from the external interrupt input terminal, and outputs the interrupt request.

(1) Register list

ENIR	7	6	5	4	3	2	1	0	Initial Value
Address : 000030H	_	_	_	_	EN3	EN2	EN1	EN0	0000в
	_	_	_	_	R/W	R/W	R/W	R/W	Read/Write
nterrupt/DTP source regi	ster (El	RR)							
EIRR	15	14	13	12	11	10	9	8	Initial Value
Address : 000031н	_	_	_	_	ER3	ER2	ER1	ER0	ХХХХв
	_	_	_	_	R/W	R/W	R/W	R/W	Read/Write
equest level setting regi	ster (EL	VR)							
	7	6	5	4	3	2	1	0	Initial Value
Address : 000032н	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	0000000в
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
: Unused									



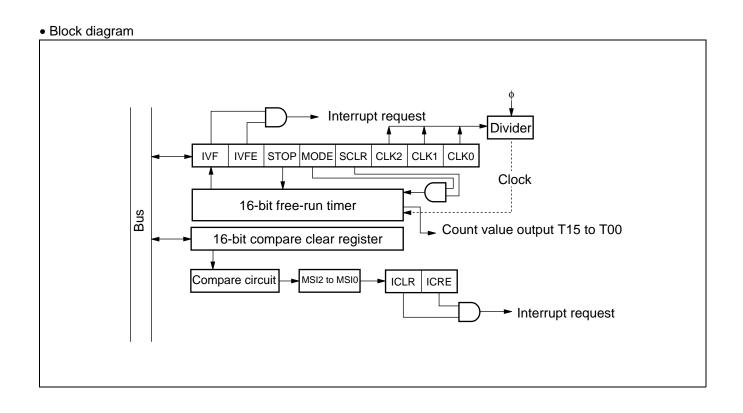
9. 16-bit input/output timer

The 16-bit I/O timer consists of one 16-bit free-run timer, two output compare and two input capture. This function enables six independent waveforms to be output based on the 16-bit free-run timer, and input pulse widths and external clock frequencies to be measured.

• Register list

• 16-bit free-run timer			
_15	5	0	_
00003Вн/00003Ан	CPO	CLR	Compare clear register
			-
00003Dн/00003Cн	TC	DT	Timer counter data register
L			1
00003Fн/00003Eн	TCCSH	TCCSL	Timer counter
			^J control/status register
16-bit Output Compare		0	
00004AH/00004BH/	OCCP0,		Compare register
00004Сн/00004Dн 📘			
00004Fн/00004Eн	OCSH	OCSL	Control status register
16-bit Input Capture			
	5		₀ ☐ Input capture data register
000044н/000045н/ 000046н/000047н	IPCP), IPCP1	
000048н		ICS01	Control status register
			—

(1) 16-bit free-run timer

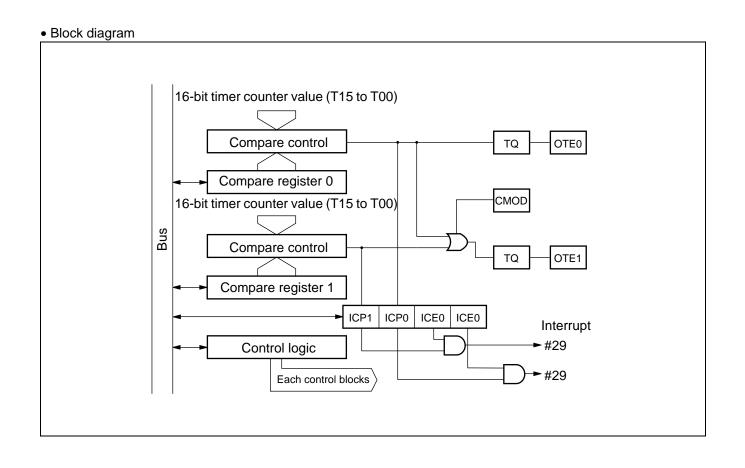

The 16-bit free-run timer consists of a 16-bit up-down counter and control status register.

Counter value of 16-bit free-run timer is available as base timer for input capture and output compare.

- Clock for the counter operation can be selected from eight types.
- The counter overflow interruption can be generated.
- Setting the mode enables initialization of the counter through compare-match operation with the value of the compare clear register in the output compare and that of the free-run timer counter.

• Register list

Compare clear register	•								Initial Value
00003 В н	15	14	13	12	11	10	9	8	
00003DH	CL15	CL14	CL13	CL12	CL11	CL10	CL09	CL08	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
	7	6	5	4	3	2	1	0	Initial Value
00003Ан	CL07	CL06	CL05	CL04	CL03	CL02	CL01	CL00	XXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
Timer counter data regis	ster (TCI	דכ							
	15	14	13	12	11	10	9	8	Initial Value
00003Dн	T15	T14	T13	T12	T11	T10	T09	T08	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
	7	6	5	4	3	2	1	0	Initial Value
00003Сн	T07	T06	T05	T04	T03	 T02	T01	T00	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
		inter (T(
Timer counter control/sta	-			40		40	0	•	Initial Value
00003Fн	15 ECKE	14	13	12	11 MCM	10	9 ICLR	8 ICRE	000000в
				MSI2	MSI1	MSIO			Read/Write
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
000025	7	6	5	4	3	2	1	0	Initial Value
00003Ен	IVF	IVFE	STOP	MODE	SCLR	CLK2	CLK1	CLK0	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
- : Unused									


(2) Output compare

The output compare consists of 16-bit compare registers, compare output pin part and a control register. It can reverse the output level for the pin and at the same time, generate an interrupt when the 16-bit free-run timer value matches a value set in one of the 16-bit compare registers of this module.

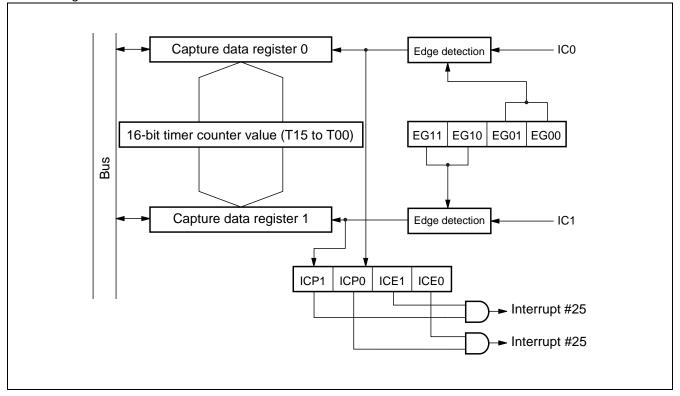
- It has a total of six compare registers that can operate independently. In addition, the output can be set to be controlled by using two compare registers.
- An interrupt can be set by a comparing match.

Register list

	15	14	13	12	11	10	9	8	Initial Value		
00004BH	OP15	OP14	OP13	OP12	OP11	OP10	OP09	OP08	0000000в		
00004D _H L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write		
	7	6	5	4	3	2	1	0	Initial Value		
00004Ан	OP07	OP06	OP05	OP04	OP03	OP02	OP01	C00	0000000в		
00004C _H L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write		
Control register (OCSH)	Control register (OCSH)										
олоо <i>(</i> — П	15	14	13	12	11	10	9	8	00000B		
00004Fн				CMOD	OTE1	OTE0	OTD1	OTD0			
			—	R/W	R/W	R/W	R/W	R/W	Read/Write		
Control register (OCSL)											
	7	6	5	4	3	2	1	0	Initial Value		
00004Ен	IOP1	IOP0	IOE1	IOE0	_		CST1	CST0	000000в		
L	R/W	R/W	R/W	R/W	_		R/W	R/W	Read/Write		
- : Unused											

(3) Input capture

The input capture consists of input capture and control registers. Each input capture has its corresponding external input pin.

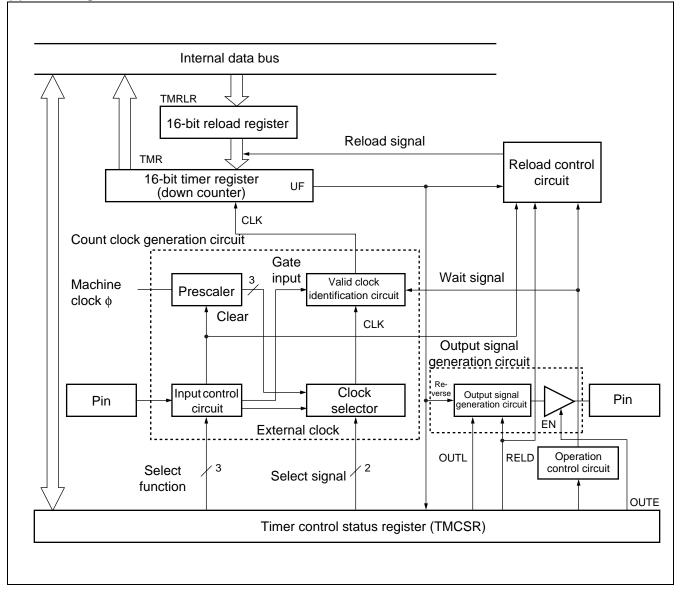

This module has a function that detects a rising edge, falling edge or both edges and holds a value of the 16bit free-run timer in a register at the time of detection. It can also generate an interrupt when detecting an edge.

- The detection edge of an external input can be selected from among three types. Rising edge/falling edge/ both edges.
- It can generate an interrupt when it detects the valid edge of the external input.

• Register list

Input capture data regist	er (IPCI	P0, IPC	P1) 13	12	11	10	9	8	Initial Value
000045н 000047н	CP15	CP14	CP13	CP12	CP11	CP10	CP09	CP08	XXXXXXXXB
	R	R	R	R	R	R	R	R	Read/Write
0000 44 н	7	6	5	4	3	2	1	0	Initial Value
000044н 000046н	CP07	CP06	CP05	CP04	CP03	CP02	CP01	CP00	XXXXXXXXB
	R	R	R	R	R	R	R	R	Read/Write
Control status register (I	CS01)								
	7	6	5	4	3	2	1	0	Initial Value
000048н	ICP1	ICP0	ICE1	ICE0	EG11	EG10	EG01	EG00	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write

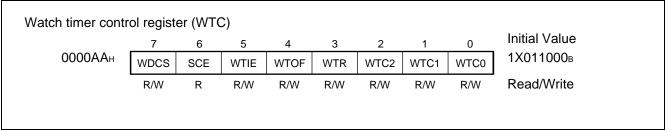
Block diagram

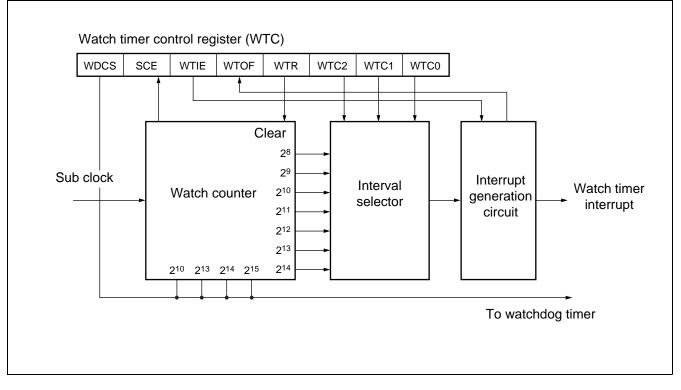


10. 16-bit reload timer

The 16-bit reload timer provides two functions either one which can be selected, the internal clock mode that performs the count down by synchronizing with 3-type internal clocks and the event count mode that performs the count down by detecting the arbitration. This timer defines an underflow as a transition of the count value from 0000_{H} to FFFF_H. Therefore, when the equation (counted value = reload register setting value+1) holds, an underflow occurs. Either mode can be selected for the count operation from the reload mode which repeats the count by reloading the count setting value at the underflow occurrence or the one-shot mode which stops the count at the underflow occurrence. The interrupt can be generated at the counter underflow occurrence so as to correspond to the DTC.

(1) Register list

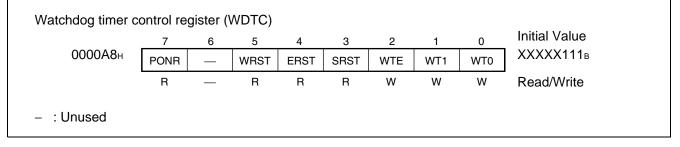

	15	14	13	12	11	10	9	8	Initial Value
000051 н	_		_	_	CSL1	CSL0	MOD2	MOD1	0000в
000055н 000059н	_				R/W	R/W	R/W	R/W	Read/Write
mer control sta	tus regist	er (lowe	er) (TMC	CSR0L t	o TMCS	SR2L)			
	7	6	5	4	3	2	1	0	Initial Value
000050н	MOD0	OUTE	OUTL	RELD	INTE	UF	CNTE	TRG	0000000в
000054н 000058н	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
16-bit timer reg	ister/16-t	oit reload	d registe	er TMR) to TMF	R2/TMR	LR0 to	MRLR2	2 (upper)
16-bit timer reg	ister/16-t 15	oit reload 14	d registe	er TMR(12) to TMF 11	R2/TMR 10	LR0 to ⁻ 9	MRLR2 8	2 (upper) Initial Value
000053н			-						
-	15	14	13	12	11	10	9	8	Initial Value
000053н 000057н	15 D15 R/W	14 D14 R/W	13 D13 R/W	12 D12 R/W	11 D11	10 D10	9 D9	8 D8	Initial Value XXXXXXXB
000053н 000057н 00005Вн	15 D15 R/W	14 D14 R/W	13 D13 R/W	12 D12 R/W	11 D11	10 D10	9 D9	8 D8	Initial Value XXXXXXXB
000053н 000057н 00005Вн	15 D15 R/W	14 D14 R/W to TMRI	13 D13 R/W LR2 (lov	12 D12 R/W N)	11 D11 R/W	10 D10 R/W	9 D9 R/W	8 D8 R/W	Initial Value XXXXXXXB Read/Write

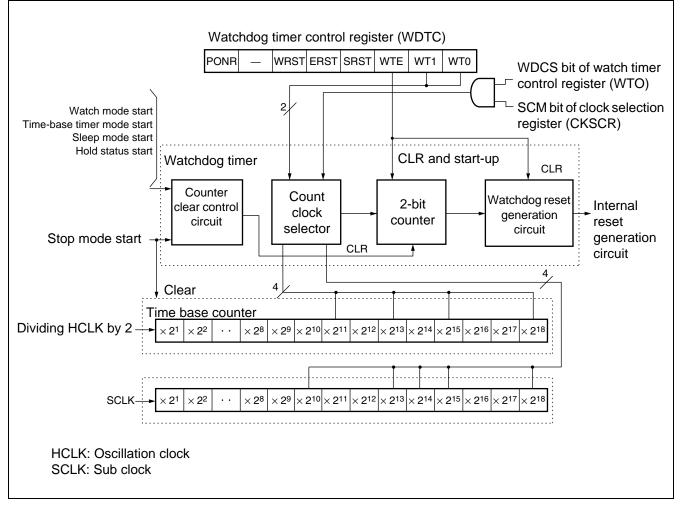


11. Watch timer

The watch timer is a 15-bit timer using the subclock. It can generate the interrupt request for each interval time. The watch timer can also be used as the clock source of the watchdog timer by setting so.

(1) Register list

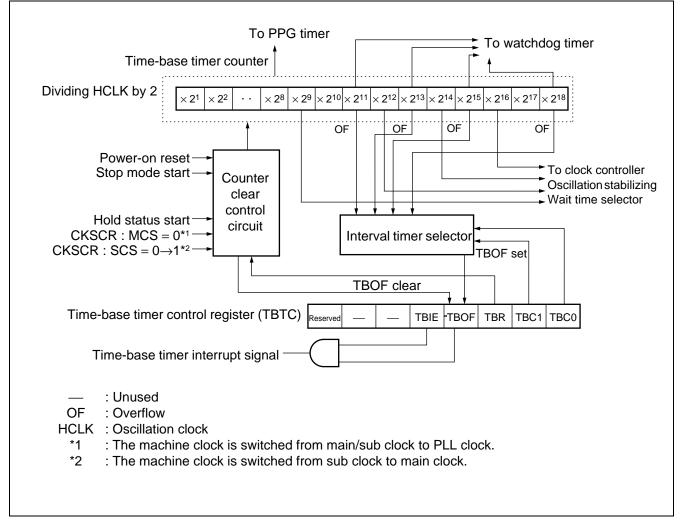




12. Watchdog timer

The watchdog timer is a timer counter provided for preventing program malfunction. The watchdog timer is a 2bit counter operating with an output of the timebase timer or watch timer as count clock and resets the CPU when the counter is not cleared within the interval time.

(1) Register list

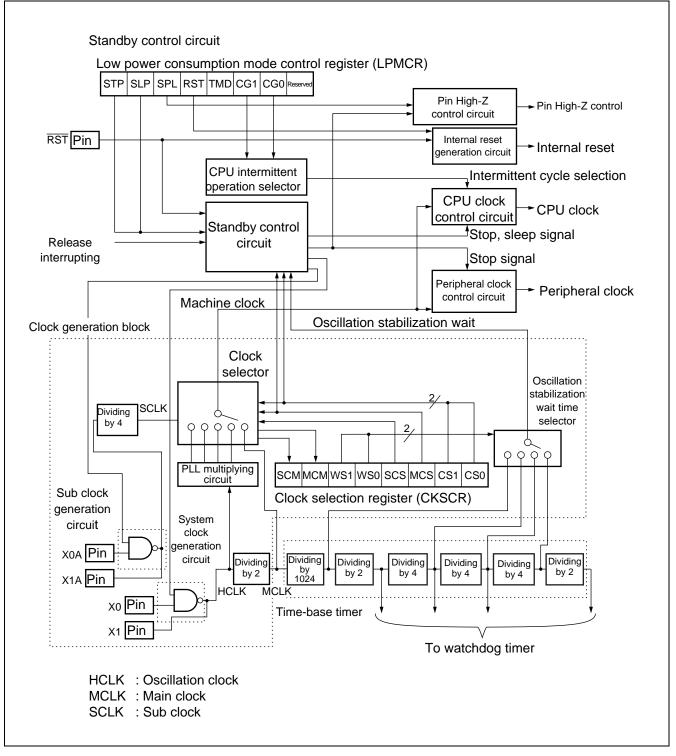


13. Time-base timer

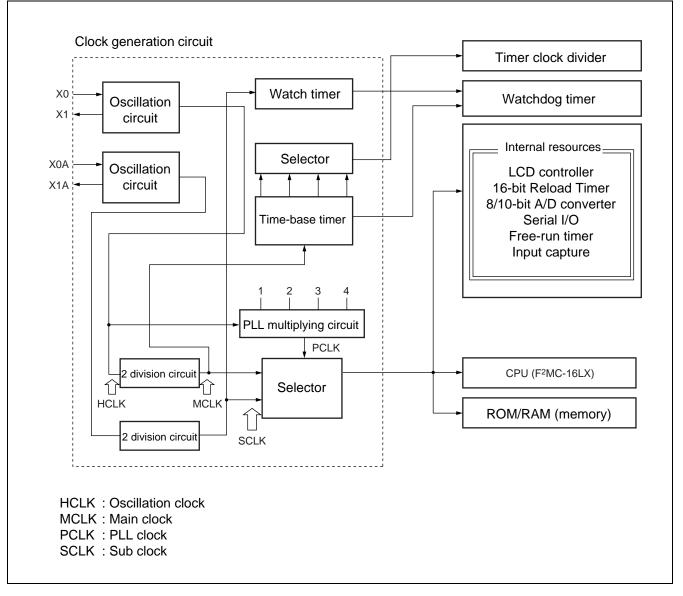
The time-base timer has a function that enables a selection of four interval times using 18-bit free-run counter (time-base counter) with synchronizing to the internal count clock (two division of original oscillation). Furthermore, the function of timer output of oscillation stabilization wait or function supplying operation clocks for watchdog timer are provided.

(1) Register list

	15	14	13	12	11	10	9	8	Initial Value
0000A9н	Reserved	_	_	TBIE	TBOF	TBR	TBC1	TBC0	1 00100в
	R/W	_		R/W	R/W	W	R/W	R/W	Read/Write



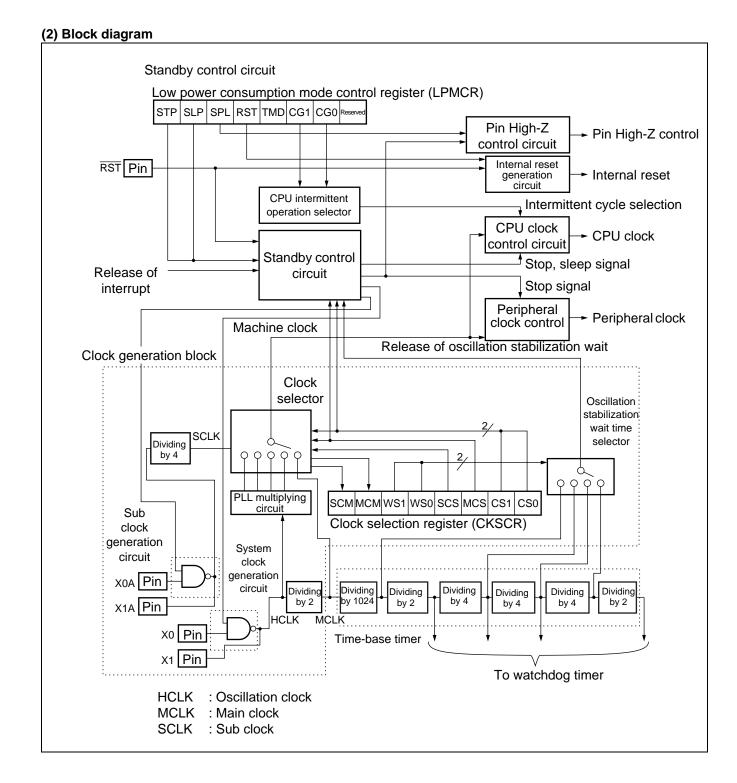
14. Clock generator


The clock generator controls operation of the internal clock which is the operation clock for the CPU and peripheral devices. This internal clock is used as machine clock and its one cycle as machine cycle. In addition, the clock generated by original oscillation is used as oscillation clock and that by internal PLL oscillation as PLL clock.

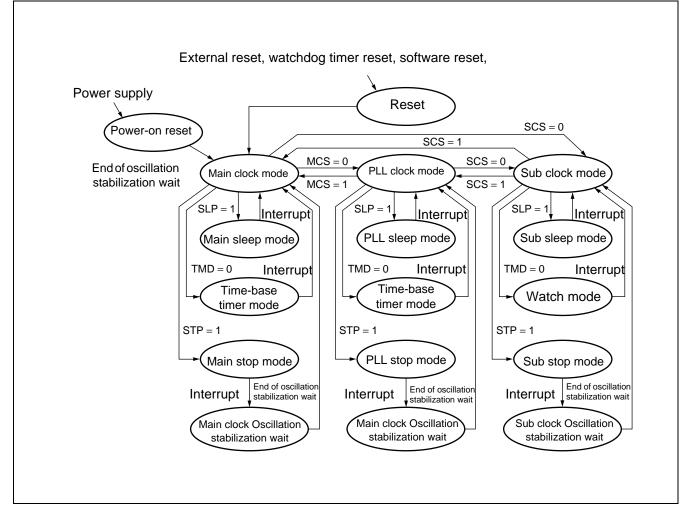
(1) Register list

	15	14	13	12	11	10	9	8	Initial Value
0000A1 н	SCM	МСМ	WS1	WS0	SCS	MCS	CS1	CS0	1111100в
	R	R	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write

(3) Clock supply map


15. Low power consumption mode

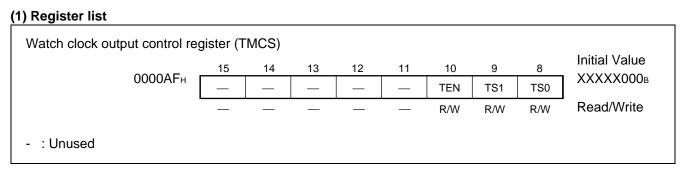
The low-power consumption mode has the following CPU operation modes by selecting the operation clock and operating the control of the clock.

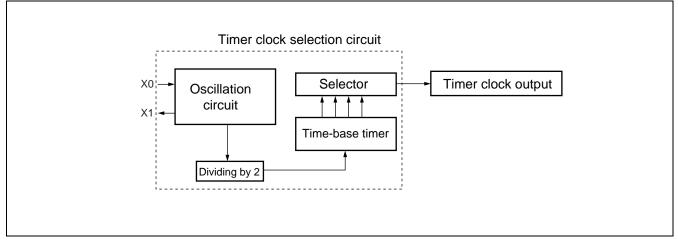

- Clock mode
 (PLL clock mode, main clock mode and sub clock mode)
- CPU intermittent operation mode (PLL clock intermittent operation mode, main clock intermittent operation mode and subclock intermittent operation mode)
- Standby mode (Sleep mode, time base timer mode, stop mode and watch mode)

(1) Register list

Low power consu	mption r	node co	ontrol reg	gister (L	PMCR)				
	7	6	5	4	3	2	1	0	Initial Value
0000А0н	STP	SLP	SPL	RST	TMD	CG1	CG0	Reserved	00011000в
	W	W	R/W	W	R/W	R/W	R/W	R/W	Read/Write

(3) Figure of status transition

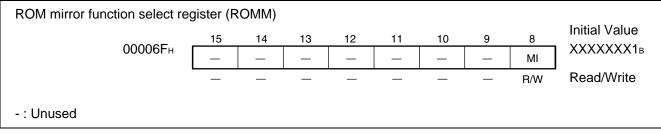

16. Timer clock output

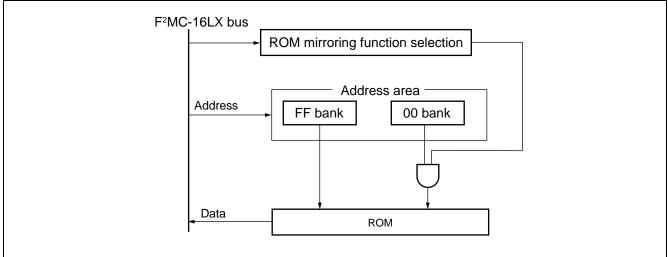

The timer clock output circuit divides the oscillation clock by the time-base timer and generates and outputs the set division clock. Selectable from 32/64/128/256 division of the oscillation clock.

The timer clock output circuit is inactive in reset or stop mode. It is active in normal run, sleep, or pseudo-timer mode.

	PLL_Run	Main_Run	Sleep	Pseudo clock	STOP	Reset
Operation status	0	0	0	0	×	×

Note : When the time-base timer is cleared while using the timer clock output circuit, the clock is not correctly output. For detail of the time-base timer's clear condition, see the section of time-base timer in the MB90800 Hardware Manual.

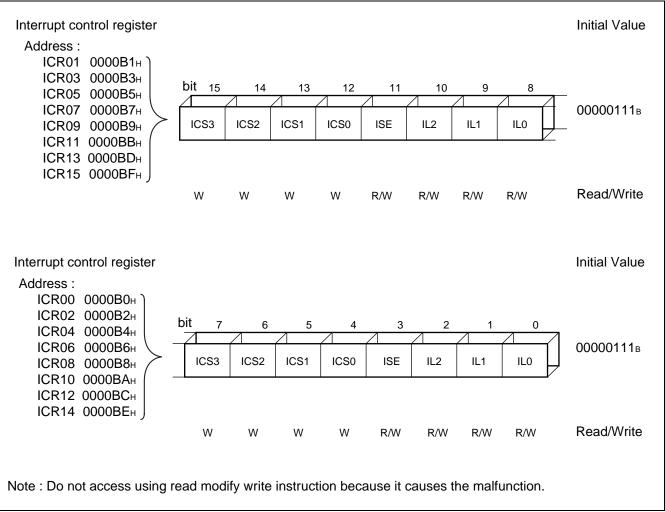



17. ROM mirroring function selection module

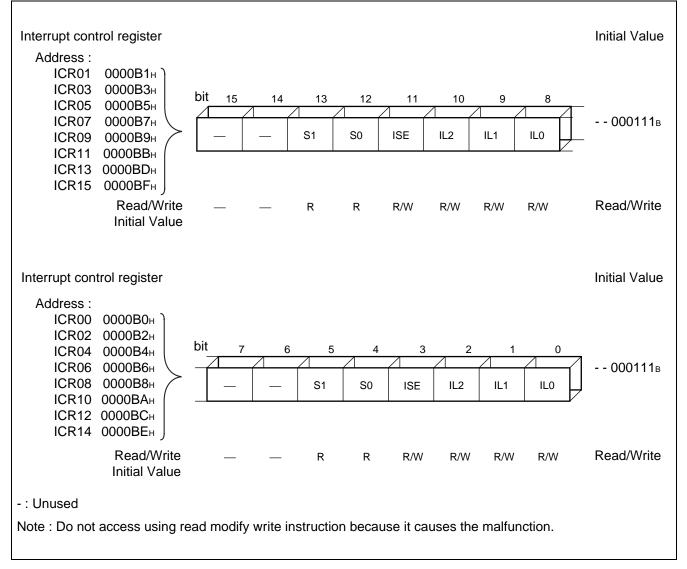
ROM mirrorring function selection module provides the setting so that ROM data located in FF bank can be read by access to 00 bank.

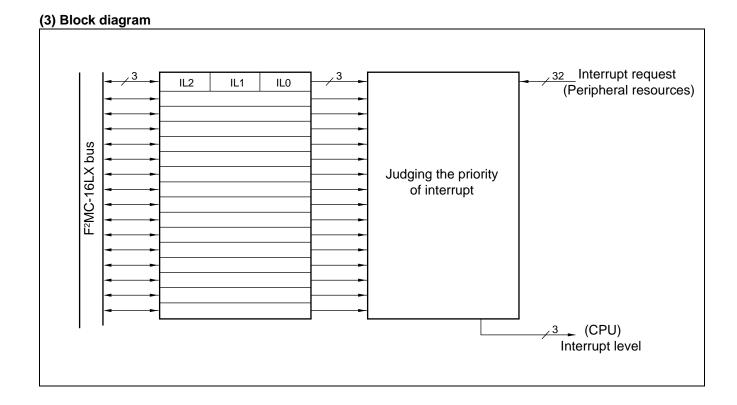
(1) Register list

(2) Block diagram


Note : Do not access to ROM mirroring function selection register in the middle of the operation of the address 008000_H to 00FFFF_H.

18. Interrupt controller


Interrupt control register is in the interrupt controller. The register corresponds to all I/O of interrupt function. The register has following functions;


• Setting of Interrupt level at correspondent peripheral circuit.

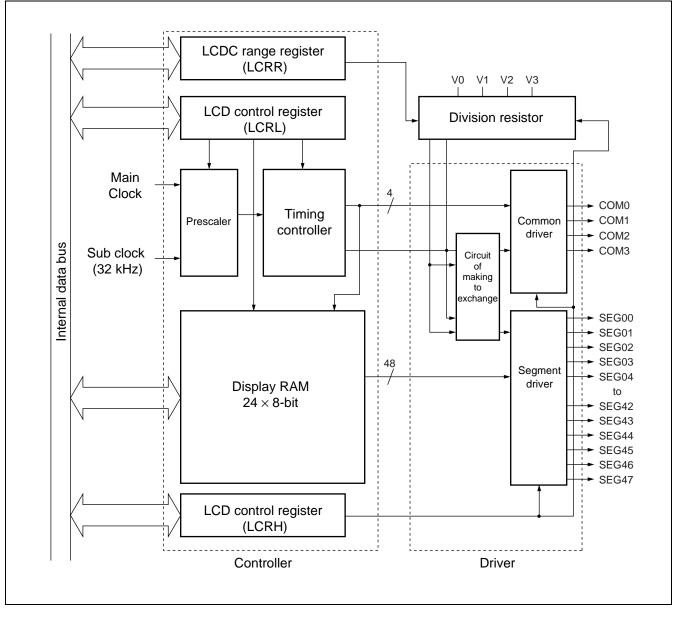
(1) Register list (at writing)

(2)Register list (at reading)

19. LCD controller/driver

The LCD controller/driver contains 24×8 -bit display data memory and controls the LCD display with four common output lines and 48 segment output lines. Three duty outputs can be selected to directly drive the LCD panel (liquid crystal display).

- Contains an LCD driving voltage split resistor. Moreover, the external division resistance can be connected.
- A maximum of four common output lines (COM0 to COM3) and 48 segment output lines (SEG0 to SEG47) are available.
- Contains 24-byte display data memory (display RAM).
- For the duty, 1/2, 1/3, or 1/4 can be selected (restricted by bias setting).
- The LCD can directly be driven.


Bias	1/2 duty	1/3 duty	1/4 duty
1/2 bias	0	×	×
1/3 bias	×	0	0

\bigcirc : Recommended mode

× : Disable	×	:	Disable
-------------	---	---	---------

(1) Register list

	15	14	13	12	11	10	9	8	Initial Value
00005Dн	SS4	VS0	CS1	CS0	SS3	SS2	SS1	SS0	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
LCD control register (lower) (LCRL)									
	7	6	5	4	3	2	1	0	Initial Value
00005Сн	CSS	LCEN	VSEL	BK	MS1	MS0	FP1	FP0	00010000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
LCDC range reg	jister (L0	CRR)							
	7	6	5	4	3	2	1	0	Initial Value
00005Eн	Reserved	Reserved	SE4	SE3	SE2	SE1	SE0	LCR	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rat	ting	Unit	Remarks
Farameter	Symbol	Min	Max	Unit	Reilidiks
	Vcc	Vss – 0.3	Vss + 4.0	V	
Power supply voltage*1	AVcc	Vss – 0.3	Vss + 4.0	V	Vcc ≥ AVcc*2
		Vss – 0.3	Vss + 4.0	V	*3
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	N-ch open-drain (5 V withstand voltagel/O) *4
Output voltage*1	Vo	Vss – 0.3	Vss + 4.0	V	*3
"L" level maximum output current			10	mA	Other than P74, P75, P40 to P47* ⁵
	IOL12		30	mA	P74, P75, P40 to P47 (Heavy-current output port) *5
"L" level average output current	OLAV1	_	3	mA	Other than P74, P75, P40 to P47 ^{*6}
	OLAV2		15	mA	P74, P75, P40 to P47 (Heavy-current output port) *6
"L" level maximum total output current	ΣΙοι	—	120	mA	
"L" level average total output current	ΣΙοιαν	—	60	mA	*7
"H" level maximum output current	Юн11	_	- 10	mA	Other than P74, P75, P40 to P47* ⁵
	Іон12		- 12	mA	P40 to P47 (Heavy-current output port) *5
"H" level average output current	Іонач		- 3	mA	*6
"H" level maximum total output current	ΣІон		- 120	mA	
"H" level average total output current	ΣΙοήαν		- 60	mA	*7
Power consumption	Pd		351	mW	
Operating temperature	TA	- 40	+ 85	°C	
Storage temperature	Тѕтс	- 55	+ 150	°C	

*1 : The parameter is based on $V_{SS} = AV_{SS} = 0.0 V$.

*2 : AVcc should not be exceeding Vcc at power-on etc.

*3 : V_I, V_o, should not exceed Vcc + 0.3 V.

- *4 : Applicable to pins : P74, P75
- *5 : A peak value of an applicable one pin is specified as a maximum output current.
- *6 : An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *7 : An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)
- WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Value		Unit	Remarks				
Farameter	Symbol	Min	Max	Unit	Nellia K5				
Power supply voltage	Vcc	2.7	3.6	V	At normal operating				
Fower supply vollage	VCC	1.8	3.6	V	Stop operation state maintenance				
	Vін	0.7 Vcc	Vcc + 0.3	V	CMOS input pin				
"H" level input voltage	Vihs	0.8 Vcc	Vcc + 0.3	V	CMOS hysteresis input pin (Resisting pressure of 5 V is $V_{CC} = 5.0$ V)				
	Vінм	Vcc - 0.3	Vcc + 0.3	V	MD pin input				
	VIL	Vss - 0.3	0.3 Vcc	V	CMOS input pin				
"L" level input voltage	Vils	Vss - 0.3	0.2 Vcc	V	CMOS hysteresis input pin				
	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input				
Operating temperature	TA	- 40	+ 85	°C					

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

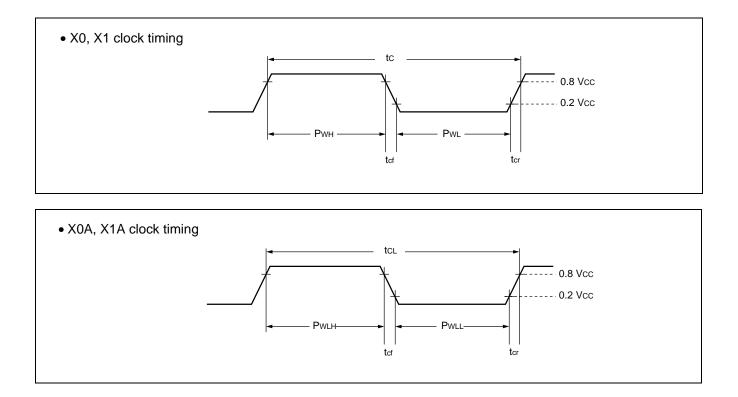
	ารแบร	1	(Vcc = AVcc = 3.3)	3 V ± 0.3 V,		/ss = 0.0 V,	ΤΑ = -	40 °C to + 85 °C)	
Parameter	Sym- bol	Pin name	Conditions	Min	Value Typ	Max	Unit	Remarks	
"H" level output voltage	Vон	Output pins other than P40 to P47, P74, P75	Іон = – 4.0 mA	Vcc – 0.5		Vcc	v		
	Vон1	P40 to P47	Іон = - 8.0 mA	Vcc - 0.5	_	Vcc	V	Heavy-current output port	
"L" level output	Vol	Output pins other than P40 to P47, P74, P75	lo∟ = 4.0 mA	Vss		Vss + 0.4	V		
voltage	Vol1	P40 to P47	lo∟ = 15.0 mA	Vss	_	Vss + 0.6	V	Heavy-current output port	
	Vol2	P74, P75	lo∟ = 15.0 mA		0.5	Vss + 0.8	V	Open-drain pin	
Open-drain output application voltage	V _{D1}	P74, P75	_	Vss - 0.3	_	Vss + 5.5	V		
Input leak current	lı∟	All output pin	Vcc = 3.3 V, Vss < Vi < Vcc	- 10	_	+ 10	μA		
Pull-up resistor	Rup	RST	Vcc = 3.3 V, T _A = + 25 °C	25	50	100	kΩ		
Pull-down resistor	Rdown	MD2	$\label{eq:Vcc} \begin{array}{l} Vcc = 3.3 \ V, \\ T_A = + \ 25 \ ^\circ C \end{array}$	25	50	100	kΩ	Except FLASH memory products	
Open drain output current	lleak	P74, P75			0.1	10	μA		
			Vcc = 3.3 V, Internal fre- quency 25 MHz At normal oper- ating		48	60	mA		
Power supply current	lcc	Vcc	Vcc = 3.3 V, Internal fre- quency 25 MHz At Flash writing	_	60	75	mA	FLASH memory products	
			Vcc = 3.3 V, Internal fre- quency 25 MHz At Flash erasing	_	60	75	mA	FLASH memory products	
	Iccs		Vcc = 3.3 V, Internal fre- quency 25 MHz at sleep mode		22.5	30	mA		

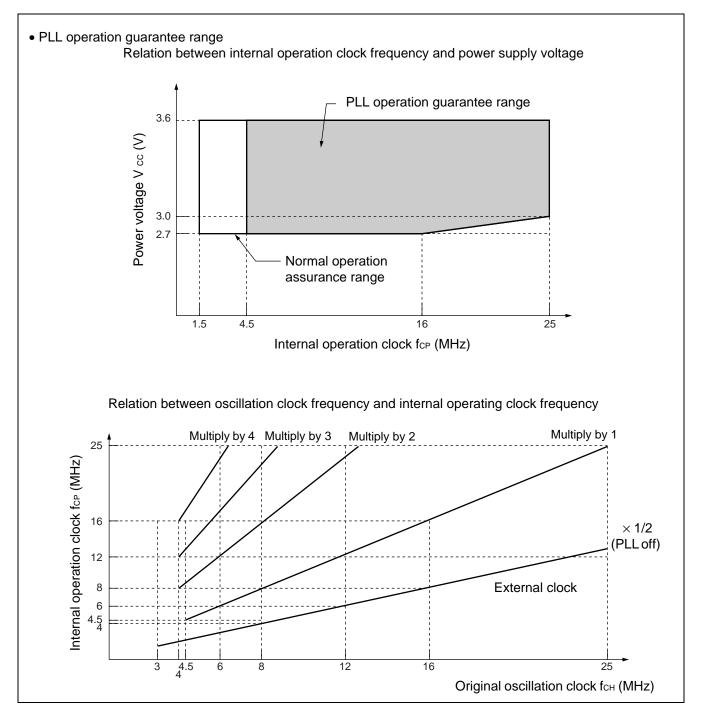
(Continued)

(Continued)

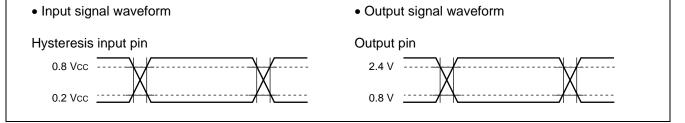
 $(V_{CC} = AV_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = AV_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} + 85 \text{ }^{\circ}\text{C})$

Devemotor	Sym-		Conditions		Value		Unit	Remarks							
Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks							
Power supply current	Ісстѕ		Vcc = 3.3 V, Internal frequency 3 MHz at timer mode	_	0.75	7	mA								
			Vcc = 3.3 V, Internal frequency 8 kHz		15	140	μA	MASK ROM products							
	lcc∟		at subclock operation, $(T_A = +25 \text{ °C})$		0.5	0.9	mA	FLASH memory products							
	Iccls	Vcc	$\label{eq:Vcc} \begin{array}{l} V_{\text{Cc}} = 3.3 \text{ V},\\ \text{Internal frequency 8 kHz}\\ \text{at subclock sleep operation,}\\ (T_{\text{A}} = + 25 \ ^{\circ}\text{C}) \end{array}$	_	23	40	μΑ								
	Ісст		$V_{CC} = 3.3 V,$ Internal frequency 8 kHz at watch mode $(T_A = +25 \ ^{\circ}C)$	_	1.8	40	μA								
	Іссн		At Stop mode, (T _A = + 25 °C)	_	0.8	40	μA								
	Rlcd	Vcc – V3	At LCR = 0 setting	100	200	400									
		Vcc – V3	At LCR = 1 setting	12.5	25	50]								
LCD division resistance		V0 – V1, V1 – V2, V2 – V3	At LCR = 0 setting	50	100	200	kΩ	*							
											V0 – V1, V1 – V2, V2 – V3	At LCR = 1 setting	6.25	12.5	25
COM0 to COM3 output impedance	Rvсом	COM0 to COM3	V1 to V3 = 3.3 V	_		2.5	kΩ								
SEG00 to SEG47 output impedance	Rvseg	SEG00 to SEG47	V T to VO = 0.0 V			15	kΩ								
LCD leak current	ILCDC	V0 to V3, COM0 to COM3, SEG00 to SEG47		- 5		+ 5	μΑ								

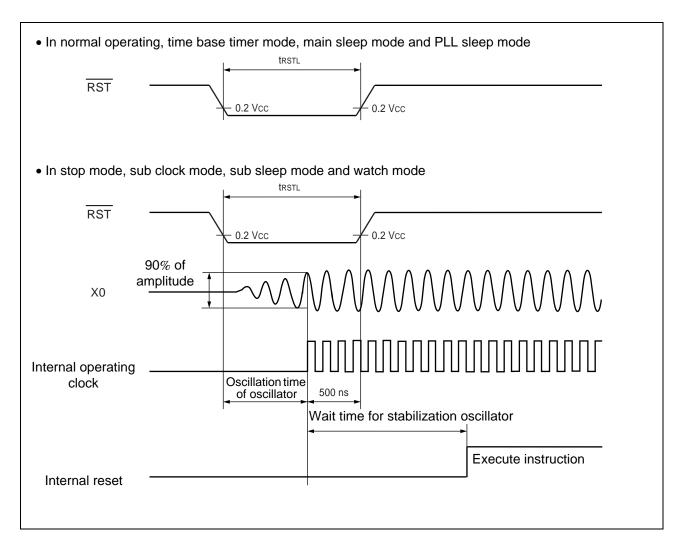

* : LCD internal divided resistor can be select two type resistor by internal divided resistor selecting bit (LCR) of LCDC range register (LCRR) .


4. AC Characteristics

(1) Clock timing


(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = - 40 °C to + 85 °C)

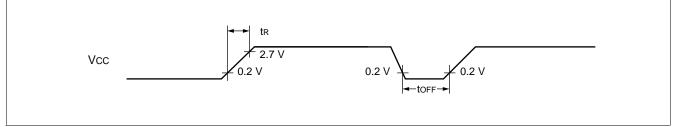
Demonstra	Sym	D .	Condi-		Value			Remarks	
Parameter	bol	Pin name	tions	Min	Тур	Max	Unit		
Clock frequency	fсн			3		16		External crystal oscillation	
				3		16		\times 1/2 (at PLL stop) At oscillation circuit	
		X0, X1		4		16		Multiply by 1 At oscillation circuit	
		χο, χτ		4		12.5		Multiply by 2 At oscillation circuit	
				4		8.33		Multiply by 3 At oscillation circuit	
	fсн	X0		4		6.25	MHz	Multiply by 4 At oscillation circuit	
	ICH			3		25		× 1/2 (at PLL stop) At external clock	
				4		25		Multiply by 1 At external clock	
				4		12.5		Multiply by 2 At external clock	
				4		8.33		Multiply by 3 At external clock	
				4		6.25		Multiply by 4 At external clock	
	fc∟	X0A, X1A			32.768		kHz		
Clock avala tima	t HCYL	X0, X1		40		333	ns		
Clock cycle time	t LCYL	X0A, X1A	1		30.5		μs		
Input clock pulse width	Рwн Pw∟	X0		5		_	ns	Set duty ratio $50\% \pm 3\%$	
	Pwlh Pwll	X0A		_	15.2	_	μs	Set duty ratio at 30% to 70% as a guideline.	
Input clock rise time and fall time	tcr tcf	X0				5	ns	At external clock	
Internal operating clock	fср			1.5		25	MHz	When main clock is used	
frequency	f _{CP1}				8.192		kHz	When sub clock is used	
Internal operating clock	tср			40		666	ns	When main clock is used	
cycle time	t _{CP1}				122.1		μs	When sub clock is used	


Rating values of alternating current is defined by the measurement reference voltage values shown below :

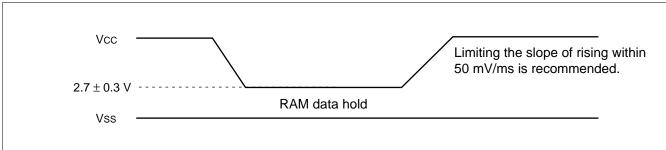
(2) Reset input timing

			(Vcc = A)	$V_{\rm CC} = 3.3 \ V \pm 0.3 \ V$, Vss =	AVss	= 0.0 V, $T_A = -40 \ ^{\circ}C \ to + 85 \ ^{\circ}C$)
Parameter	Sym-	Pin name	Condi-	Value		Unit	Remarks
Falameter	bol	Fininanie	tions	Min	Мах	Unit	r ellidiks
Posot input time	teer	RST		500	_	ns	At normal operating, at time base timer mode, at main sleep mode, at PLL sleep mode
Reset input time	t rstl			Oscillation time of oscillator*+ 500 ns		μs	At stop mode, at sub clock mode, at sub sleep mode, at watch mode

* : Oscillation time of oscillator is time until oscillation reaches 90% of amplitude. It takes several milliseconds to several dozens of milliseconds on a crystal oscillator, several hundreds of microseconds to several milliseconds on a FAR/ceramic oscillator, and 0 milliseconds on an external clock.


(3) Power-on reset

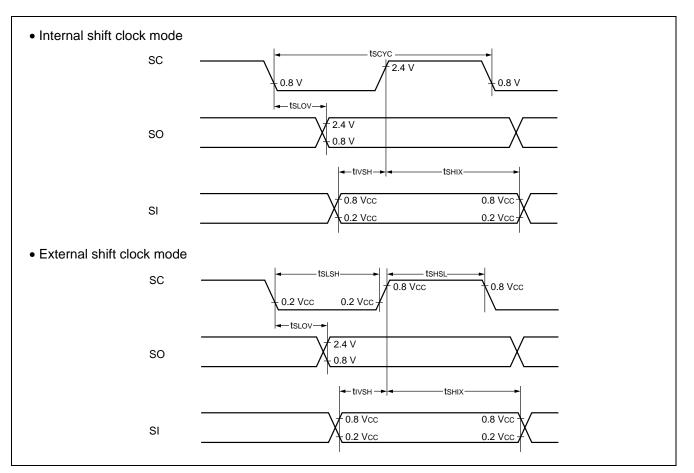
$(V_{CC} = AV_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = AV_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to} + 85 ^{\circ}\text{C})$										
Parameter	Symbol	Pin name	Condi-	Value		di- Value		Unit	Remarks	
Faranieter	Symbol		tions	Min	Max	Unit	Itellia KS			
Power supply rising time	tR	Vcc		—	30	ms	At normal operating			
Power supply shutdown time	toff	Vcc		1		ms	Wait time until power on			


Notes : • Vcc should be set under 0.2 V before power-on rising up.

• These value are for power-on reset.

• In the device, there are internal registers which is initialized only by a power-on reset. If these initialization is executing, power-on procedure must be obeyed by these value.

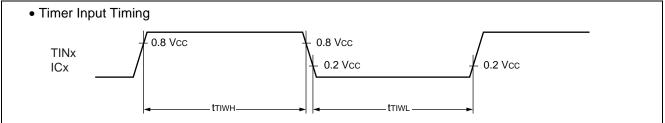
Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, raise the power smoothly by suppressing variation of voltages as shown below.


(4) Serial I/O

Parameter	Sym	Pin name	Conditions	Va	ue	Unit	Remarks
Falalletel	bol	Fininame	Conditions	Min	Max	Unit	Neillai KS
Serial clock cycle time	tscyc	SC0 to SC3		8 t cp		ns	
$SCK \downarrow \to SOT$ delay time	tslov	SC0 to SC3, SO0 to SO3	Internal shift clock	-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SC0 to SC3,	mode output pin : C∟ = 80 pF + 1TTL	100		ns	
$SCK \uparrow \rightarrow Valid$ SIN hold time	tsнıx	SI0 to SI3		60		ns	
Serial clock H pulse width	t shsl	SC0 to SC3		4 t CP		ns	
Serial clock L pulse width	t s∟sн	300 10 303		4 t CP		ns	
$SCK \downarrow \to SOT$ delay time	tslov	SC0 to SC3, SO0 to SO3	External shift clock mode output pin :		150	ns	
Valid SIN \rightarrow SCK \uparrow	t ivsh	SC0 to SC3,	C∟ = 80 pF + 1TTL	60		ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıx	SI0 to SI3		60		ns	

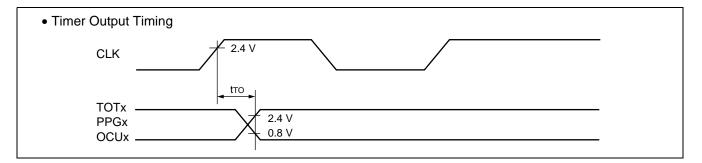
Notes : • The above rating is in CLK synchronous mode.

 \bullet C $_{\text{L}}$ is a load capacitance value on pins for testing.


• tcp is machine cycle frequency (ns) . Refer to " (1) Clock timing".

(5) Timer input timing

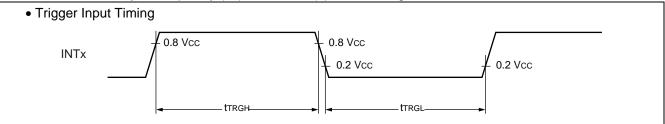
$(V_{CC} = AV_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = AV_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to} + 85 ^{\circ}\text{C})$								
Parameter	Symbol	Pin name	Pin name Conditions		Value		Remarks	
Farameter	Symbol	Finitianie	Conditions	Min	Max	Unit	itemarks	
Input pulse width	tтıwн tтıw∟	TIN0 to TIN2, IC0, IC1		4 tcp	_	ns		


Note : tcp is machine cycle frequency (ns) . Refer to " (1) Clock timing".

(6) Timer output timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = - 40 °C to + 85 °C)

Parameter	Sym-	Pin name	Condi-	Va	ue	Unit	Remarks
rarameter	bol	i in name	tions	Min	Max	Onic	Remarks
$CLK \uparrow \to T_{OUT} \text{ change time}$	tто	TOT0 to TOT2, PPG0, PPG1, OCU0, OCU1		30		ns	



(7) Trigger input timing

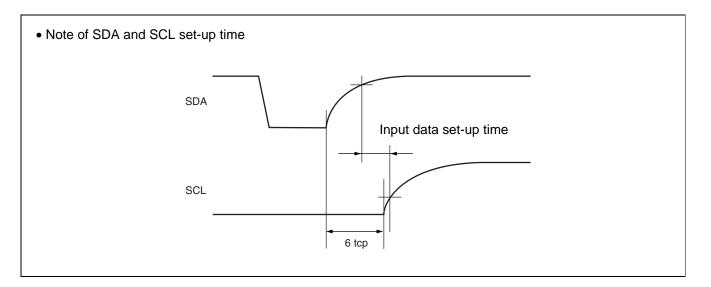
```
(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T<sub>A</sub> = -40 °C to +85 °C)
```

Parameter	Symbol	Pin name	Condi-	Va	lue	Unit	Remarks
Falameter	Symbol	Finname	tions Min Max		Unit	Remarks	
Input pulse width	t trgh	INT0 to INT3		5 tcp	_	ns	At normal operating
	t trgl			1		μs	In Stop mode

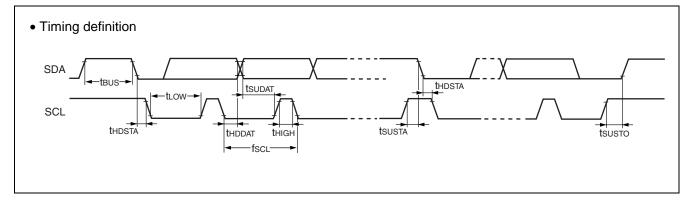
Note : tcp is machine cycle frequency (ns) . Refer to " (1) Clock timing".

(8) I²C timing

$(AVcc = Vcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = -40 °C t$	to + 85 °C))
---	-------------	---


Parameter	Symbol	Conditions	Stan mo		Unit
			Min	Max	
SCL clock frequency	fsc∟		0	100	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	t hdsta	When power supply voltage of external	4.0		μs
"L" width of the SCL clock	tLOW	pull-up resistor is 5.0 V R = 1.0 k Ω , C = 50 pF ^{*2}	4.7		μs
"H" width of the SCL clock	tніgн	When power supply voltage of external	4.0		μs
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	t susta	pull-up resistor is 3.6 V R = 1.0 k Ω , C = 50 pF ^{*2}	4.7		μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t hddat		0	3.45 *3	μs
Data set-up time		When power supply voltage of external pull-up resistor is 5.0 V $f_{CP}^{*1} \le 20$ MHz, R = 1.0 k Ω , C = 50 pF ^{*2} When power supply voltage of external pull-up resistor is 3.6 V $f_{CP}^{*1} \le 20$ MHz, R = 1.0 k Ω , C = 50 pF ^{*2}	250 *4		ns
$SDA \downarrow \uparrow \rightarrow SCL \uparrow$	t sudat		200 *4		ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto	When power supply voltage of external pull-up resistor is 5.0 V	4.0		μs
Bus free time between a STOP and START condition	teus	$\label{eq:result} \begin{array}{l} R = 1.0 \ \mathrm{k}\Omega, \ C = 50 \ \mathrm{p} \mathrm{F}^{*2} \\ \text{When power supply voltage of external} \\ \text{pull-up resistor is } 3.6 \ V \\ R = 1.0 \ \mathrm{k}\Omega, \ C = 50 \ \mathrm{p} \mathrm{F}^{*2} \end{array}$	4.7		μs

*1 : fcP is internal operation clock frequency. Refer to " (1) Clock timing".


*2 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.

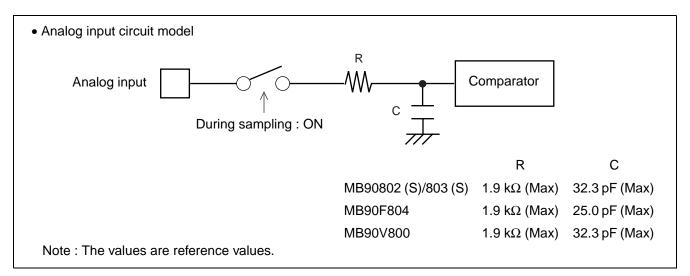
*3 : The maximum theorem only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.

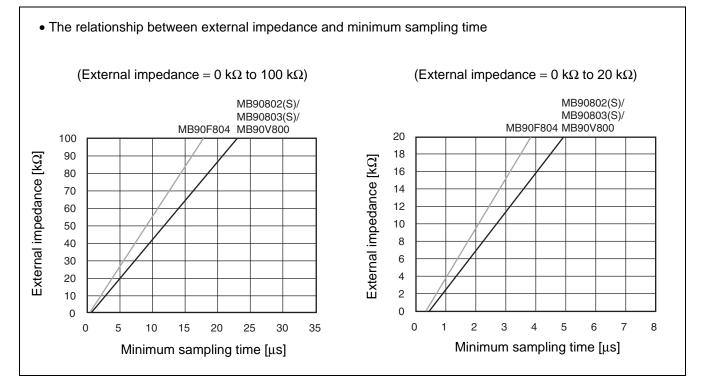
*4 : Refer to "• Note of SDA and SCL set-up time".

Note : The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor. Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

5. Electrical Characteristics for the A/D Converter

$(V_{cc} = AV_{cc} = 3.3 V \pm 0.3 V, V_{ss} = AV_{ss} = 0.0 V, T_A = -40^{\circ}C \text{ to } + 85$							
Parameter	Sym-	Pin name		Value		Unit	Remarks
i arameter	bol	1 III Hame	Min Typ		Max	0	Kemarko
Resolution		—			10	bit	
Total error					± 3.0	LSB	
Nonlinear error					± 2.5	LSB	
Differential linear error					± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN11	AVss – 1.5 LSB	AVss+0.5 LSB	AV _{ss} + 2.5 LSB	mV	1 LSB = AVcc/1024
Full-scale transition voltage	Vfst	AN0 to AN11	AVcc – 3.5 LSB	AVcc – 1.5 LSB	AVcc+0.5 LSB	mV	1 200 - AVCC/ 1024
Conversion time	_		8.64*1			μs	
Sampling time			2		—	μs	
Analog port input current	AIN	AN0 to AN11	—		10	μΑ	
Analog input voltage	Vain	AN0 to AN11	0		AVcc	V	
Reference voltage		AVcc	3.0		AVcc	V	
Dower outputy ourrent	A	AVcc		1.4	3.5	mA	
Power supply current	Іан	AVcc			5* ²	μΑ	
Reference voltage	IR	AVcc		94	150	μA	
supplying current	IRH	AVcc			5* ²	μA	
Interchannel disparity		AN0 to AN11			4	LSB	


 $(V_{cc} = AV_{cc} = 33V + 03V)_{ss} = AV_{ss} = 0.0V$ 40° C to + 85 °C)


*1 : At operating, main clock 25 MHz.

*2 : If A/D converter is not operating, a current when CPU is stopped is applicable (at Vcc - CPU = AVcc = 3.3 V)

About the external impedance of analog input and its sampling time>

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relation-ship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. And, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

• About errors

As | AVRH – AVss | becomes smaller, values of relative errors grow larger.

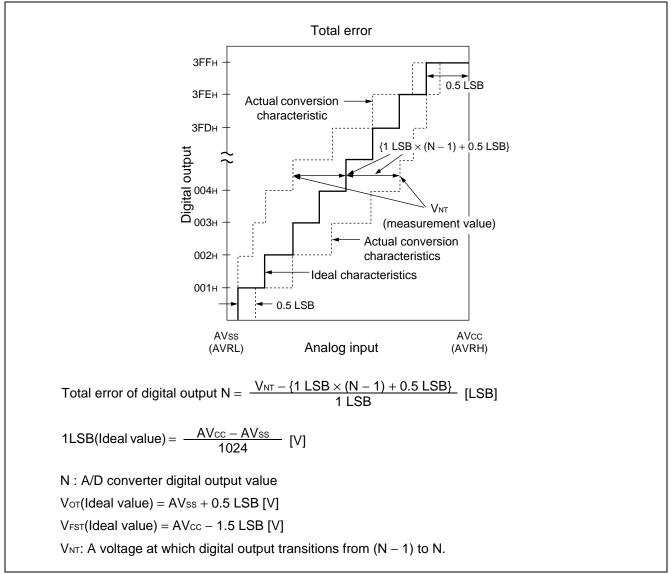
6. Definition of A/D Converter Terms

Resolution

Analog variation that is recognized by an A/D converter.

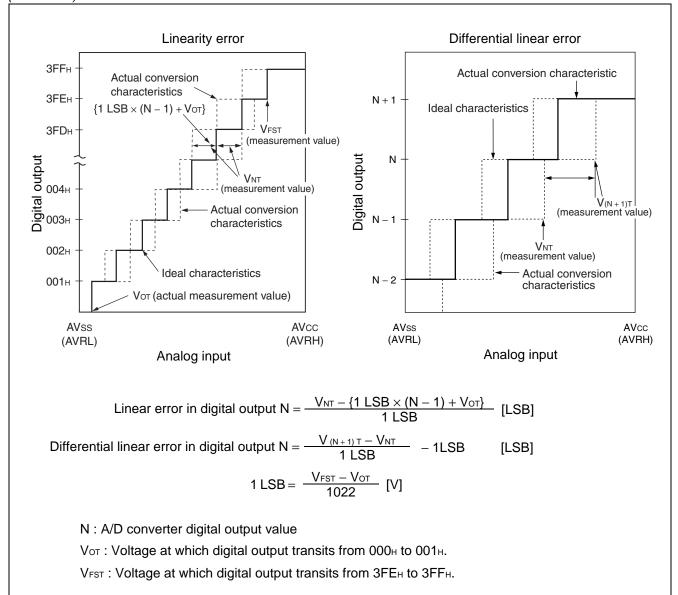
The 10-bit can resolve analog voltage into $2^{10} = 1024$.

Total error


This shows the difference between the actual voltage and the ideal value and means a total of error because of offset error, gain error, non-linearity error and noise.

Linearity error

Deviation between a line across zero-transition line (00 0000 0000 \leftrightarrow 00 0000 0001) and full-scale transition line (11 1111 1110 \leftrightarrow 11 1111 1111) and actual conversion characteristics.

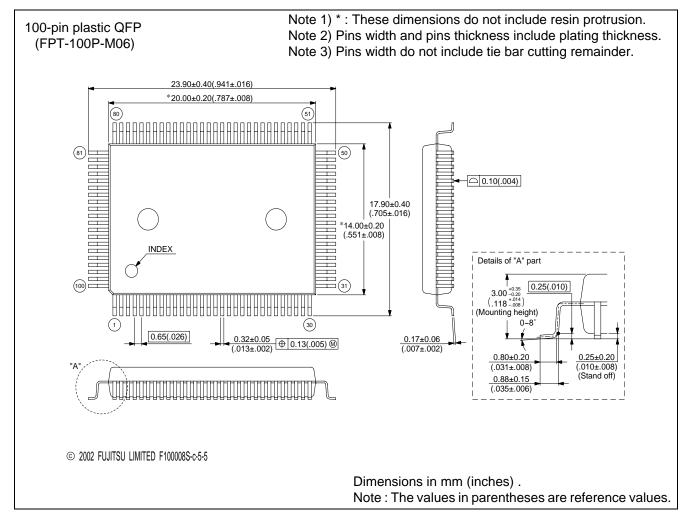

Differential linear error

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

(Continued)

(Continued)

7. FLASH MEMORY


Parameter	Conditions		Value		Unit	Remarks
Faidilletei	Conditions	Min	Тур	Max	Unit	rteilidi k5
Sector erase time		_	1	15	S	Excludes 00⊦ programming prior to erasure.
Chip erase time	$\begin{array}{l} T_{\text{A}}=+~25~^{\circ}\text{C}\\ \text{Vcc}=3.0~\text{V} \end{array}$		9		S	Excludes 00⊦ programming prior to erasure.
Word (16-bit width) programming time			16	3600	μs	Except for the over head time of the system.
Program/erase cycle	_	10000		_	cycle	
Flash memory data retention time	Average T _A = + 85 °C	20			year	*

* : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F804-101PF-G MB90F804-201PF-G		
MB90803PF-G MB90803SPF-G MB90802PF-G MB90802SPF-G	100-pin plastic QFP (FPT-100P-M06)	

PACKAGE DIMENSION

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.