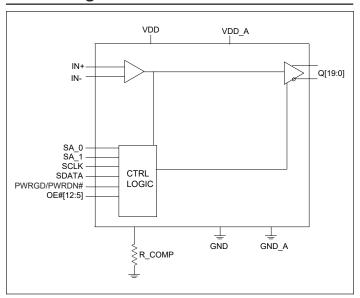


20-Output PCIe 4.0/5.0 Clock Buffer With On-Chip Termination

Features


- Supports Intel's DB2000Q pinout
- 3.3V Supply Voltage
- HCSL Input: 100MHz (typ), up to 200MHz
- 20 Differential Low-Power HCSL Outputs with On-Chip Termination
- Strapping Pins or SMBus for Configuration
- Very-Low Jitter Outputs
 - Differential additive phase jitter: DB2000Q <30fs RMS
 - Differential additive phase jitter: PCIe Gen 4 < 30fs RMS
 - Differential additive phase jitter: PCIe Gen 5 < 20fs RMS
 - PCIe[®] Gen 1/Gen 2/Gen 3/Gen 4/Gen 5 compliant
- Differential Output-to-Output Skew <50ps
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.
 - https://www.diodes.com/quality/product-definitions/
- Packaging (Pb-free & Green):
 - □ 72-lead 10mm × 10mm TQFN

Description

The DIODES™ PI6CB332000 is an 20-output very low-power PCIe clock buffer. It is capable of distributing the reference clocks for UPI,SAS,SATA, and other applications as well. It takes an reference input to fanout 20 100MHz low-power differential HCSL outputs with on-chip terminations. The on-chip termination can save 80 external resistors and make layout easier. 8 OE pins combined with SMBus register pins for controlling each output provides easier power management.

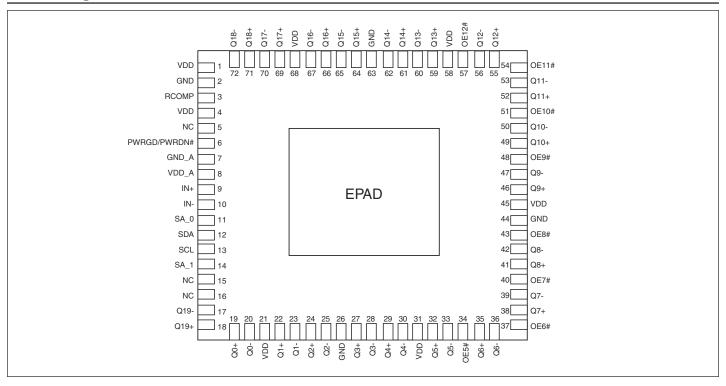
It uses Diodes' proprietary design to achieve very-low jitter that meets PCIe Gen 1/Gen 2/Gen 3/Gen 4/Gen 5 requirement.

Block Diagram

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

DIODES is a trademark of Diodes Incorporated in the United States and other countries.


The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries.

PCI Express[®] and PCIe[®] are trademarks or registered trademarks and/or service marks of PCI-SIG Corporation,

Pin Configuration

Pin Description

Pin Number	Pin Name	Ту	pe	Description
1	VDD	Power	_	Power Supply, Nominal 3.3V
2	GND	Power	_	Connect to Ground
3	RCOMP	Input	_	Connect 412Ω resistor to this pin. Device functions even if this pin is not connected.
4	VDD	Power	_	Power Supply, Nominal 3.3V. (1)
5	NC	_	_	No Connect
6	PWRGD/ PWRDN#	Input	_	Power Good Enable or Power Down Pin. When powered down, outputs are LOW.
7	GND_A	Power	_	Connect to Ground
8	VDD_A	Power	_	Power Supply, Nominal 3.3V
9	IN+	Input	_	Differential True Clock Input
10	IN-	Input	_	Differential Complementary Clock Input
11	SA_0	Input	_	Address Selection pin, Pulled High
12	SDA	Input/ Output	_	Open Collector for SMBUS Data
13	SCL	Input	_	SMBUS Slave Clock Input
14	SA_1	Input	_	Address Selection Pin, Pulled High

Note: 1. This pin can be left as NC.

Pin Description Cont.

Pin Number	Pin Name	Ту	pe	Description
15	NC	_	_	No Connect
16	NC	_	_	No Connect
17	Q19-	Output	HCSL	Differential Complementary Clock Output
18	Q19+	Output	HCSL	Differential True Clock Output
19	Q0+	Output	HCSL	Differential True Clock Output
20	Q0-	Output	HCSL	Differential Complementary Clock Output
21	V_{DD}	Power	_	Power Supply, Nominal 3.3V
22	Q1+	Output	HCSL	Differential True Clock Output
23	Q1-	Output	HCSL	Differential Complementary Clock Output
24	Q2+	Output	HCSL	Differential True Clock Output
25	Q2-	Output	HCSL	Differential Complementary Clock Output
26	GND	Power	_	Ground
27	Q3+	Output	HCSL	Differential True Clock Output
28	Q3-	Output	HCSL	Differential Complementary Clock Output
29	Q4+	Output	HCSL	Differential True Clock Output
30	Q4-	Output	HCSL	Differential Complementary Clock Output
31	VDD	Power	_	Power Supply, Nominal 3.3V
32	Q5+	Output	HCSL	Differential True Clock Output
33	Q5-	Output	HCSL	Differential Complementary Clock Output
34	OE5#	Input	CMOS	Active Low Input for Enabling Q5 Pair. 1 = disable outputs, 0 = enable outputs
35	Q6+	Output	HCSL	Differential True Clock Output
36	Q6-	Output	HCSL	Differential Complementary Clock Output
37	OE6#	Input	CMOS	Active Low Input for Enabling Q6 Pair. 1 = disable outputs, 0 = enable outputs
38	Q7+	Output	HCSL	Differential True Clock Output
39	Q7-	Output	HCSL	Differential Complementary Clock Output
40	OE7#	Input	CMOS	Active Low Input for Enabling Q7 Pair. 1 = disable outputs, 0 = enable outputs
41	Q8+	Output	HCSL	Differential True Clock Output
42	Q8-	Output	HCSL	Differential Complementary Clock Output
43	OE8#	Input	CMOS	Active Low Input for Enabling Q8 Pair. 1 =disable outputs, 0 = enable outputs
44	GND	Power	_	Ground
45	V_{DD}	Power	_	Power Supply, Nominal 3.3V
46	Q9+	Output	HCSL	Differential True Clock Output
47	Q9-	Output	HCSL	Differential Complementary Clock Output

Pin Description Cont.

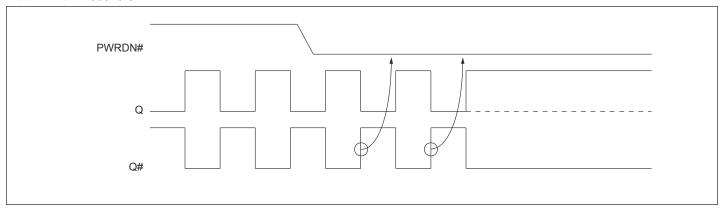
Pin Number	Pin Name	Ту	pe	Description
48	OE9#	Input	CMOS	Active Low Input for Enabling Q9 Pair. 1 =disable outputs, 0 = enable outputs
49	Q10+	Output	HCSL	Differential True Clock Output
50	Q10-	Output	HCSL	Differential Complementary Clock Output
51	OE10#	Input	CMOS	Active Low Input for Enabling Q10 Pair. 1 = disable outputs, 0 = enable outputs
52	Q11+	Output	HCSL	Differential True Clock Output
53	Q11-	Output	HCSL	Differential Complementary Clock Output
54	OE11#	Input	CMOS	Active Low Input for Enabling Q11 Pair. 1 = disable outputs, 0 = enable outputs
55	Q12+	Output	HCSL	Differential True Clock Output
56	Q12-	Output	HCSL	Differential Complementary Clock Output
57	OE12#	Input	CMOS	Active Low Input for Enabling Q12 Pair. 1 = disable outputs, 0 = enable outputs
58	VDD	Power	_	Power Supply, Nominal 3.3V
59	Q13+	Output	HCSL	Differential True Clock Output
60	Q13-	Output	HCSL	Differential Complementary Clock Output
61	Q14+	Output	HCSL	Differential True Clock Output
62	Q14-	Output	HCSL	Differential Complementary Clock Output
63	GND	Power	_	Ground
64	Q15+	Output	HCSL	Differential True Clock Output
65	Q15-	Output	HCSL	Differential Complementary Clock Output
66	Q16+	Output	HCSL	Differential True Clock Output
67	Q16-	Output	HCSL	Differential Complementary Clock Output
68	VDD	Power	_	Power Supply, Nominal 3.3V
69	Q17+	Output	HCSL	Differential True Clock Output
70	Q17-	Output	HCSL	Differential Complementary Clock Output
71	Q18+	Output	HCSL	Differential True Clock Output
72	Q18-	Output	HCSL	Differential Complementary Clock Output
_	EPAD	Power	_	Connect to Ground

SMBus Address Selection Table

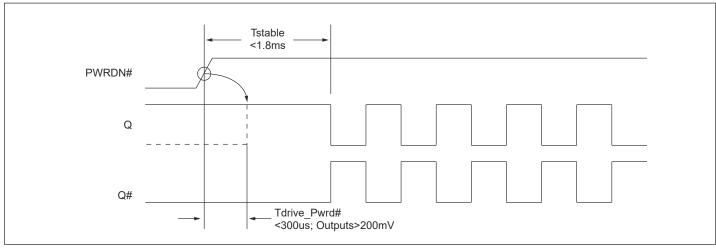
SA_1	SA_0	Address
L	L	D8
L	M	DA
L	Н	DE
M	L	C2
M	M	C4
M	Н	C6
Н	L	CA
Н	M	CC
Н	Н	CE

Power Management Table

PWRGD/PWRDN#	Q+	Q-
0	Low	Low
1	Normal	Normal


OE Functionality

Inputs	3	OE# Hardware Pins and Control Register Bits				
PWRGD/PWRDN#	PWRGD/PWRDN# IN+/IN-		OE# Pin	Q+/Q- [12:5]	Q+/Q- [18:13], [4:0]	
0	X	X	X	Low/Low	Low/Low	
		0	X	Low/Low	Low/Low	
1	Running	1	0	Running	Running	
		1	1	Low/Low	Running	



PWRDN# Assertion

PWRGD Assertion

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Supply Voltage to Ground Potential, V_{DDxx} –0.5V to +4.0V
$\label{eq:control} \begin{array}{lllllllllllllllllllllllllllllllllll$
SMBus, Input High Voltage
ESD Protection (HBM)
Junction Temperature

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Conditions

Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V _{DD} , V _{DD} _A	Power Supply Voltage	_	3.135	3.3	3.465	V
I_{DD}	Power Supply Current	V_{DD} + V_{DDA} , All outputs active @ 100MHz	_	210	250	mA
I _{DD_PD}	Power Supply Power Down ⁽¹⁾ Current	V_{DD} + V_{DDA} , All outputs LOW/LOW	_	1.8	3.0	mA
T _A	Ambient Temperature	Industrial grade	-40	_	85	°C

Note:

Input Electrical Characteristics

Input Lite.	i i cui ciui uctei isties					
Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
R _{pu}	Internal Pull-Up Resistance	_	_	120	_	KW
R _{dn}	Internal Pull-Down Resistance	_	_	120	_	KW
L _{PIN}	Pin Inductance	_	_	_	7	nН

^{1.} Input clock is not running.

SMBus Electrical Characteristics

Temperature = T_A. Supply voltages per normal operation conditions. See test circuits for load conditions.

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
V _{DDSMB}	Nominal Bus Voltage	_	2.7	_	3.6	V
		SMBus, $V_{DDSMB} = 3.3V$	2.1	_	3.6	
V_{IHSMB}	SMBus Input High Voltage	SMBus, V _{DDSMB} < 3.3V	$\begin{array}{c} 0.65 \\ V_{DDSMB} \end{array}$	_	_	V
	SMBus Input Low Voltage	SMBus, $V_{DDSMB} = 3.3V$	_	_	0.6	V
V_{ILSMB}		SMBus, V _{DDSMB} < 3.3V	_	_	0.6	V
I _{SMBSINK}	SMBus Sink Current	SMBus, at V _{OLSMB}	4	_	_	mA
V _{OLSMB}	SMBus Output Low Voltage	SMBus, at I _{SMBSINK}	_	_	0.4	V
f_{MAXSMB}	SMBus Operating Frequency	Maximum frequency	_	_	400	kHz
t_{RMSB}	SMBus Rise Time	(Max V_{IL} - 0.15) to (Min V_{IH} + 0.15)	_	_	1000	ns
t_{FMSB}	SMBus Fall Time	(Min V_{IH} + 0.15) to (Max V_{IL} - 0.15)	_	_	300	ns

LVCMOS DC Electrical Characteristics

Temperature = T_A. Supply voltages per normal operation conditions. See test circuits for the load conditions.

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V_{IH}	Input High Voltage	Single-ended inputs except trilevel pins	2	_	V _{DD} +0.3	V
V_{IL}	Input Low Voltage	Single-ended inputs except trilevel pins	-0.3	_	0.8	V
V_{IH}	Input High Voltage	Single-ended trilevel inputs	2.4	_	V _{DD} +0.3	V
V _{IM}	Input Mid Voltage	Single-ended trilevel inputs	1.2	$0.5 V_{ m DD}$	1.8	V
$V_{\rm IL}$	Input Low Voltage	Single-ended trilevel inputs	-0.3	_	0.9	V
I_{IH}	Input High Current	Single-ended inputs, $V_{IN} = V_{DD}$		_	5	mA
I_{IL}	Input Low Current	Single-ended inputs, $V_{IN} = 0V$	-5	_	_	μΑ
I _{IH}	Input High Current	$\label{eq:single-ended} Single-ended inputs with pull-up resistor, \\ V_{IN} = V_{DD}$	_	_	5	mA
I_{IL}	Input Low Current	$\label{eq:control_signal} \begin{array}{l} \text{Single-ended inputs with pull-up resistor,} \\ V_{IN} = 0V \end{array}$	-50	_	_	μΑ
C _{IN}	Input Capacitance	_	1.5		5	pF
t _{RF}	Rise/ Fall Time of Input	_	_	_	5	ns

LVCMOS AC Electrical Characteristics

Temperature = T_A. Supply voltages per normal operation conditions. See test circuits for the load conditions.

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
t _{OELAT}	Output Enable Latency	Q start after OE# assertion Q stop after OE# deassertion	1	6	10	clocks
t _{PDLAT}	PD# Deassertion	Differential outputs enable after PD# deassertion	_	200	300	μs

HCSL Input Characteristics(1)

Temperature = T_A . Supply voltages per normal operation conditions. See test circuits for the load conditions.

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
f_{IN}	Input Frequency	_	1	100	200	MHz
V_{IHDIF}	Diff. Input High Voltage (3)	IN+, IN-, single-ended measurement	330	_	1150	mV
V _{ILDIF}	Diff. Input Low Voltage (3)	IN+, IN-, single-ended measurement	-300	0	300	mV
V _{SWING}	Diff. Input Swing Voltage	Peak-to-peak value (V _{IHDIF} - V _{ILDIF)}	200	_	_	mV
V _{COM}	Common Mode Voltage	_	0	_	900	mV
t_{RF}	Diff. Input Slew Rate (2)	_	0.7	_	_	V/ns
I _{IN}	Diff. Input Leakage Current	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	_	5	μΑ
t_{DC}	Diff. Input Duty Cycle	Measured differentially	45	_	55	%
tj _{c-c}	Diff. Input Cycle-to-Cycle Jitter	Measured differentially	_	_	125	ps

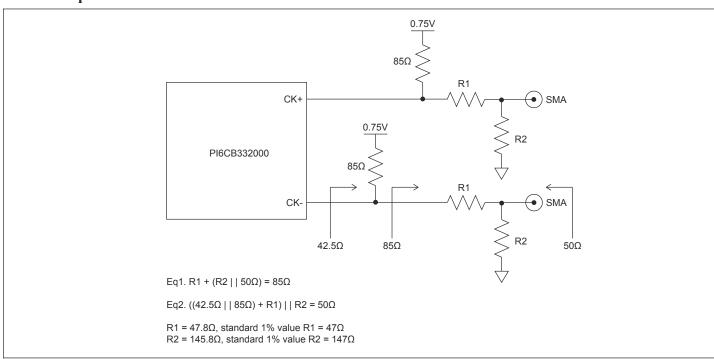
Note:

^{1.} Guaranteed by design and characterization—not 100% tested in production.

^{2.} Slew rate measured through ±75mV window centered around differential zero.

^{3.} The device can be driven by a single-ended clock by driving the true clock and biasing the complement clock input to the Vbias, where Vbias is $(V_{IH}-V_{IL})/2$.

HCSL Output DC Characteristics


Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
V _{OH}	Output Voltage High (1)		225		270	mV
V _{OL}	Output Voltage Low (1)		10	0	150	mV
V _{OMAX}	Output Voltage Maximum (Overshoot) (1)				V _{OH} + 75mV	mV
V _{OMIN}	Output Voltage Minimum (Undershoot) (1)		V _{OL} + 75mV			mV
Vcross absolute	Absolute Crossing Point Voltage (1,2)		130		200	mV
Vcross relative	Relative Crossing Point Voltage (1,2)				35	mV
DC Distor- tion	Duty Cycle Distortion (3,4)		-1		1	%

Note

- 1. At default SMBUS amplitude settings.
- $2.\ Guaranteed\ by\ design\ and\ characterization-not\ 100\%\ tested\ in\ production.$
- 3. Measured from differential waveform.
- 4. Duty cycle distortion is the difference in duty cycle between the out and input clock when the device is operated in the PLL bypass mode.

HCSL Output DC Test Load

HCSL Output AC Characteristics

Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
f _{OUT}	Output Frequency			100	200	MHz
t _{RF}	Slew Rate (1,2,3)	Scope averaging on, 10in trace	1.5	3.0	4	V/ns
Dt _{RF}	Slew Rate Matching (1,2,4)	Scope averaging on, 10in trace			20	%
t _{SKEW}	Output Skew (1,2)	Averaging on, $V_T = 50\%$			50	ps
V _{MAX}	Maximum Output Voltage	Measurement on single ended signal us-	660	780	850	mV
V _{MIN}	Minimum Output Voltage	ing absolute value	-150	20	150	mV
tj _{c-c}	Additive Cycle-to-Cycle Jitter (1,2)			0	0.05	ps
T _{pd}	Propagation Delay			1.5	2	ns

PCIe Common Clock (CC) Architecture Jitter

Symbol	Parameters	Condition	Min.	Тур.	Max.	Spec Limit	Units
		PCIe Gen 1 ⁽⁶⁾	_	0	0.03	86	ps (pkpk)
		PCIe Gen 2 Low Band, 10kHz < f < 1.5MHz (PLL BW 5-16MHz or 8-5MHz, CDR = 10MHz)	_	0	0.03	3	ps
		PCIe Gen 2 High Band, 1.5MHz < f < Nyquist (50MHz); (PLL BW 5-16MHz or 8-5MHz, CDR = 10MHz)	_	0	0.03	3.1	ps
t _{iPHASE}	Additive Integrated Phase	PCIe Gen 3 (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)	_	0	0.03	1	ps
, , , , , , , , , , , , , , , , , , , ,	Jitter (RMS) (1,2,7,8)	PCIe Gen 4 (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)	_	0	0.03	0.5	ps
		PCIe Gen 5 (PLL BW of 500k to 1.8MHz. CDR =20MHz) (9)		0.07	0.12	0.15	ps
		100MHz (12kHz to 20MHz), input jitter ~156fs	_	87	120	NA ⁽¹⁰⁾	fs
		156.25MHz (12kHz to 20MHz), input jitter ~110fs	_	47	100	NA ⁽¹⁰⁾	fs
		100MHz, apply DB2000Q filter, see figure 5			25	80	fs

Note:

- 1. Guaranteed by design and characterization—not 100% tested in production.
- 2. Measured from differential waveform.
- 3. Slew rate is measured through the Vswing voltage range centered around differential 0V within ±150mV window.
- 4. Slew rate matching is measured through $\pm 75 \text{mV}$ window centered around differential zero.
- 5. See http://www.pcisig.com for complete specifications.
- 6. Sample size of at least 100k cycles. This can be extrapolated to 108ps pk-pk @ 1M cycles for a BER of 10⁻¹².
- 7. Applies to all differential outputs.
- 8. For additive jitter RMS value is calculated by the following equation = SQRT [$(total\ jitter)^{*2}$ $(input\ jitter)^{*2}$].
- 9. PCIe Gen 5 v0.9 specification
- 10. Not available.

PCIe Independent Reference Clock Architecture Jitter

Symbol	Parameters	Condition	Min.	Тур.	Max.	Spec Limit	Units
		PCIe Gen 3 SRIS (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)	_	0	0.03	0.7	ps
t _{jPHASE}	Additive Integrated Phase Jitter (RMS)	PCIe Gen 4 SRIS (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)	_	0	0.03	0.7	ps
		PCIe Gen 4 SRNS (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)	_	0	0.03	0.7	ps

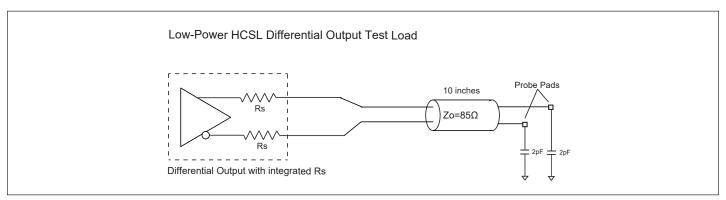


Figure 1. Low Power HCSL AC Test Circuit

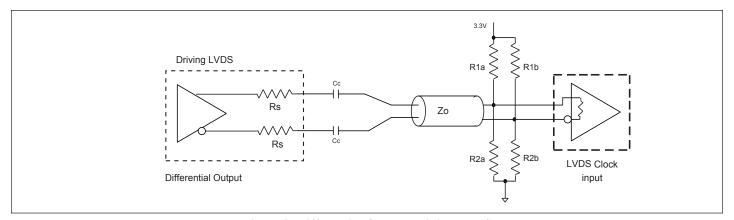


Figure 2. Differential Output Driving LVDS

Differential Output Terminations Driving LVDS ($Z_0 = 100\Omega$)

Component	Receiver with termination	Receiver without termination	Unit
R_{1a}, R_{1b}	10,000	140	Ω
R_{2a}, R_{2b}	5600	75	Ω
$C_{\mathbb{C}}$	0.1	0.1	μF
V _{CM}	1.2	1.2	V

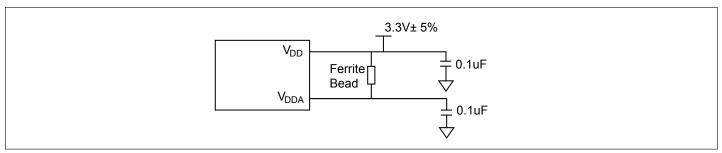


Figure 3. Power Supply Filter

SMBus Serial Data Interface

PI6CB332000 is a slave only device that supports block read and block write protocol using a single 7-bit address and read/write bit as shown below.

Read and write block transfers can be stopped after any complete byte transfer.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	See SMBus Ad	dress Selection	Гable	1/0

Note: SMBus address is latched on SADR pin.

How to Write

1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	1 bit
Start Bit	Add.	W(0)	Ack	Beginning Byte Location = N	Ack	Data Byte Count = X	Ack	Beginning Data Byte (N)	Ack	 Data Byte (N+X-1)	Ack	Stop Bit

How to Read

1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit
Start bit	Address	W(0)	Ack	Beginning Byte Location = N	Ack	Repeat Start Bit	Address	R(1)	Ack	Data Byte Count = X	Ack	Beginning Data Byte (N)	Ack

	8 bits	1 bit	1 bit
	Data Byte	NAck	Stop Pit
	(N+X-1)	NACK	Stop Bit

Byte 0: Output Enable Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Reserved	_		1	_	_
6	Q19_OE	Q19 Output Enable	RW	1	Low	Enable
5	Q18_OE	Q18 Output Enable	RW	1	Low	Enable
4	Q17_OE	Q17 Output Enable	RW	1	Low	Enable
3	Q16_OE	Q16 Output Enable	RW	1	Low	Enable
2	Reserved	_	_	0	_	_
1	Reserved	_	_	0	_	_
0	Reserved	_	_	1	_	_

Byte 1: Output Enable Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Q7_OE	Q7 Output Enable	RW	1	Low	Enable
6	Q6_OE	Q6 Output Enable	RW	1	Low	Enable
5	Q5_OE	Q5 Output Enable	RW	1	Low	Enable
4	Q4_OE	Q4 Output Enable	RW	1	Low	Enable
3	Q3_OE	Q3 Output Enable	RW	1	Low	Enable
2	Q2_OE	Q2 Output Enable	RW	1	Low	Enable
1	Q1_OE	Q1 Output Enable	RW	1	Low	Enable
0	Q0_OE	Q0 Output Enable	RW	1	Low	Enable

Byte 2: Output Enable Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Q15_OE	Q15 Output Enable	RW	1	Low	Enable
6	Q14_OE	Q14 Output Enable	RW	1	Low	Enable
5	Q13_OE	Q13 Output Enable	RW	1	Low	Enable
4	Q12_OE	Q12 Output Enable	RW	1	Low	Enable
3	Q11_OE	Q11 Output Enable	RW	1	Low	Enable
2	Q10_OE	Q10 Output Enable	RW	1	Low	Enable
1	Q9_OE	Q9 Output Enable	RW	1	Low	Enable
0	Q8_OE	Q8 Output Enable	RW	1	Low	Enable

Byte 3: OE# Pin Realtime Readback Control Register

Bit	Control Function	Description	Туре		0	1
7	OE12#	Realtime Readback of OE12#	R Re		OE12# = Low	OE12# = High
6	OE11#	Realtime Readback of OE11#	R	Realtime	OE11# = Low	OE11# = High
5	OE10#	Realtime Readback of OE10#	R	Realtime	OE10# = Low	OE10# = High
4	OE9#	Realtime Readback of OE9#	R Realtime		OE9# = Low	OE9# = High
3	OE8#	Realtime Readback of OE8#	R	Realtime	OE8# = Low	OE8# = High
2	OE7#	Realtime Readback of OE7#	R	Realtime	OE7# = Low	OE7# = High
1	OE6#	Realtime Readback of OE6#	R	Realtime	OE6# = Low	OE6# = High
0	OE5#	Realtime Readback of OE5#	R	Realtime	OE5# = Low	OE5# = High

Note:

1. B1[5] must be set to 1 for these bits to have any effect on the part.

Byte 4: Reserved

Bit	Control Function	Description		Power Up Condition	0	1
7:0	Reserved	_	_	0	_	_

Byte 5: Revision and Vendor ID Register

Bit	Control Function	Description	Туре	Power Up Condition	0 1
7	RID3		R	0	
6	RID2	Revision ID	R	0	0000
5	RID1		R	0	rev = 0000
4	RID0		R	0	
3	PVID3		R	0	
2	PVID2	Vendor ID	R	0	D-vi 0011
1	PVID1		R	1	Pericom = 0011
0	PVID0		R	1	

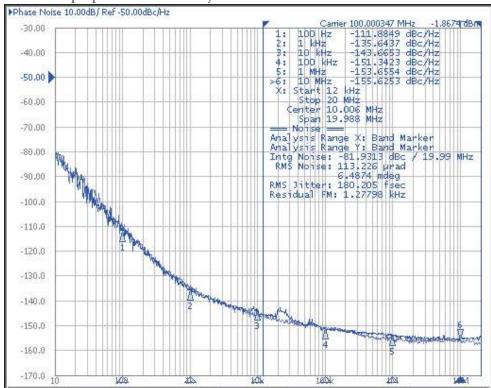
Byte 6: Device Type/Device ID Register

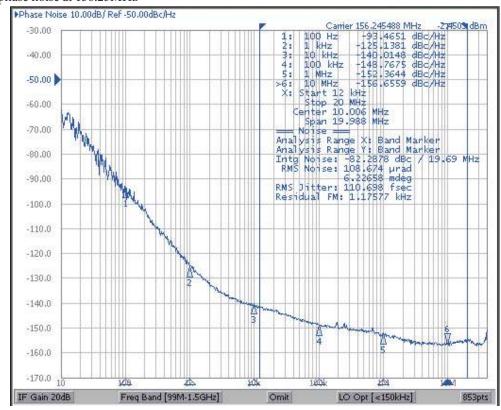
Bit	Control Function	Description	Type	Power Up Condition	0	1
7	DID7		R	0		
6	DID6		R	1		
5	DID5		R	0		
4	DID4	Desire ID	R	0		
3	DID3	Device ID	R	1		
2	DID2	-	R	0		
1	DID1		R	0		
0	DID0		R	0		

Byte 7: Byte Count Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Reserved	_	_	0	_	_
6	Reserved	_	_	0	_	_
5	Reserved	_	_	0	_	_
4	BC4		RW	0		
3	BC3		RW	1	Writing to this	register
2	BC2	Byte Count Programming	RW	0	configures how many bytes read back; default is 8 bytes	
1	BC1		RW	0		
0	BC0		RW	0		

Byte 8: Vendor Specific


Bit	Control Function	Description	Туре	Power Up Condition	0	1
7:0	Reserved	_	_	0	_	_



Phase Noise Plots

100MHz input phase noise vs output phase noise. Additive jitter 87fs.

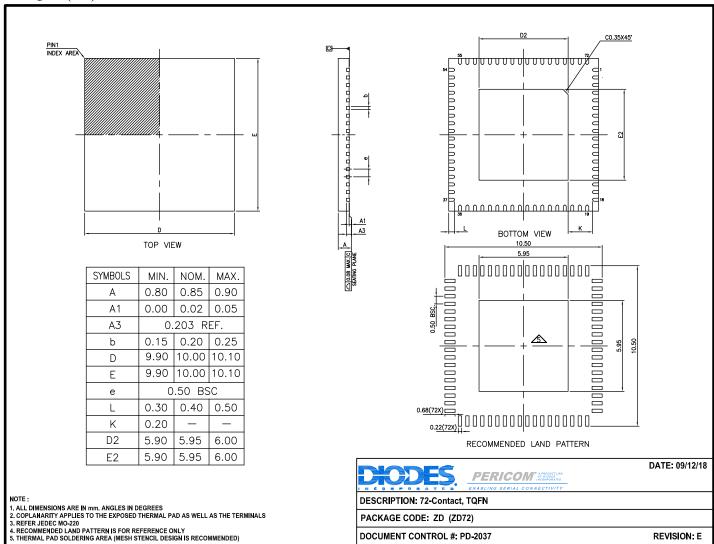
Achievable output phase noise at 156.25MHz

Thermal Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
θ_{JA}	Thermal Resistance Junction to Ambient	Still air			25.85	°C/W
θ_{JC}	Thermal Resistance Junction to Case				12.55	°C/W

Part Marking

PI6CB332 000ZDIE YYWWXX


YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical

72-TQFN (ZD)

For latest package information:

 $See \ http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.$

Ordering Information

Ordering Code	Package Code	Package Description	Operating Temperature
PI6CB332000ZDIEX	ZD	72-Contact (TQFN)	Industrial

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. I = Industrial
- 5. E = Pb-free and Green
- 6. X suffix = Tape/Reel

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but
 may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

DIODES is a trademark of Diodes Incorporated in the United States and other countries.

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries.

© 2022 Diodes Incorporated. All Rights Reserved.

www.diodes.com